沈定刚教授:深度学习在医学影像分析中的应用丨2018医学影像AI经典演讲回顾(二)( 九 )

先举一个例子,关于小孩早期脑发育。我们知道小孩出生后的前12个月非常重要,因为在这个阶段小孩开始学习说话、走路,有很多病变可能也在一年内发生。首先,我们来看一张同一个小孩从出生到60个月大时的脑图像。我们前一年每隔三个月对小孩的大脑进行扫描,从而获得小孩脑子前一年的变化。经研究发现,第一年小孩的大脑体积增大120%,第二年大概增大15-20%。很多早期的病变,比如自闭症,在第一年就已经可以看到相应的症状,但是第一年图像变换非常复杂。这里我们不用视频的形式,而是把图像一幅一幅显示出来。最左边是两周的图像,最右边是12个月的图像,中间是6个月的图像,可以看到红的曲线和绿的曲线几乎完全重叠在一起。

我们脑子里包含白质、灰质、皮层,皮层里的灰质包含我们的脑神经元。要在前6个月的时候就能预测小孩3到4岁的时候会不会患自闭症,需要对脑子进行一系列复杂分析:第一步是脑图像分割,就是把白质和灰质从图像中分割出来,但这是一个非常难的问题。请注意,利用现有的成人图像的所有分析方法都不能准确分割小孩的脑图像。我们可以看看用成人图像分割方法的结果,分割得杂乱无章。这方面我们在UNC做了10年的研究,投入了很多博士后和学生,这些人后来也都成为了本领域的专家,取得了很多研究成果。