商业化|自动驾驶十年,商业化与挑战( 四 )


以货车驾驶员的成本为例,美国货车驾驶员年收入中位数为44500美元,中国驾驶员年薪相对较低,但平均年收入也达到20万左右。据《自动驾驶应用场景及商业化路径(2020)》报告显示,在公路运输中,人力成本通常占运输总成本的30%~40%。而在800千米以上的干线运输中,由于每车需要配备2~3名驾驶员,所以人力成本还会进一步增加。
而自动驾驶的应用恰好就能解决干线物流的成本问题。再加上作为干线物流主要落地场景的高速公路属于半封闭场景,这个领域的自动驾驶应用早在2006年前后就已经拥有了比较可行的技术方案。因此,一直以来,干线物流也被认为是自动驾驶里最大的一块蛋糕。
干线物流之后,末端物流同样也是自动驾驶不可忽视的商业落地场景,而且就目前来说,这还可能是最早走进人们生活的自动驾驶场景。
所谓末端物流,简单理解其实就是快递小哥将快递从快递点送到你手中的那最后一公里。2013年,国际电商巨头亚马逊提出了无人机配送计划,成为最早提出无人配送的公司。受此影响,国内电商和快递企业纷纷加入无人配送相关研究。
商业化|自动驾驶十年,商业化与挑战
文章插图
阿里无人送货车
2015年,刘强东同样提出要用无人机解决配送的最后一公里的问题。2016年,京东成立X事业部,将无人仓、无人机、无人车、无人超市四大业务囊括其中。其中无人车项目就与自动驾驶息息相关。并且到今年10月份,京东的无人配送车就已经在江苏常熟试点运营。
而同样在今年10月,由阿里巴巴达摩院研发的22辆无人送货机器人“小蛮驴”也正式进入浙江大学紫金港校区。作为全球首个纯机器人送货点位,今年双十一期间,22辆“小蛮驴”预计将为3万多件包裹提供上门服务。
当然,在末端物流配送中,除了送快递包裹之外,送餐送外卖也非常有可能成为新的自动驾驶应用场景。今年10月,据自然资源部官网显示,美团全资子公司北京美大智达获得导航电子地图制作甲级测绘资质。
地图甲级测绘资质是测绘高精度地图的必要条件,而制作高精度地图又是自动驾驶必不可少的基础。显然,在未来,美团也很有可能进入自动驾驶的末端配送领域。而自动驾驶也将成为外卖小哥和快递小哥的重要合作搭档。
总的来说,从公共交通到物流配送,自动驾驶商业化前景十分广阔。而随着商业化的落地,自动驾驶给人们生活带来的改变也似乎触手可及。
只是,在这种触手可及背后,自动驾驶从载货到载人的道路还并不简单。
03 自动驾驶的挑战自动驾驶对生活的改变固然前景美好,但在通向这种美好的道路上,如今的自动驾驶仍然面临着许多困难和挑战。这其中,一方面是技术层面的挑战,另一方面则是道德的诘问和法律的空白。
在技术上,自动驾驶当前最难的问题是感知的决策规划。所谓感知就是车辆需要感知周围的客观环境,例如前后左右有多少人,有多少车,他们的行动路径是怎样的;而决策规划就是在对感知到的内容进行充分计算之后,如何避开障碍物并选择最优的路径进行行动。
在早期,自动驾驶主要采用的感知方式是视觉感知技术,即通过摄像头来感知周围的环境。但这种模式却存在一些局限,例如视觉存在死角,或者在大雾、雨雪等极端天气中,视觉会受到干扰。
而为了应对视觉感知的不足,增强自动驾驶的全天候感知能力,各大厂商逐渐给车辆增加了微波雷达、毫米波雷达、超声波雷达和激光雷达。而随着堆料的不断丰富,车辆的安全性固然越来越有保障,但代价也很明显,那就是自动驾驶车辆的成本越来越高。
而在车辆本身的制造成本之外,自动驾驶还需要依靠高精度地图。所谓高精度地图是一种专门为自动驾驶服务的地图。与传统地图不同,高精度地图能够精确到车道级别,车道的每一个转弯的弯度是多少,每一个上坡的坡度是多少。
因此,制作高精度地图本身就是一件十分耗费成本的事情,更何况这个地图还需要实时更新。所以在自动驾驶应用中,高精度地图更像是一个无底洞般需要持续地投入资金进行测绘。
当然,虽然目前主流厂商大多都坚持车辆雷达不断堆料+高精度地图的配置,但有一个厂商不同,那就是特斯拉。
在2019年4月特斯拉举办的“Autonomy Day”上,马斯克曾说出了一句得罪全行业的话,大概意思是:"傻子才用激光雷达,现在谁要还是靠激光雷达,那就要完蛋,注定完蛋!”