医疗|陈根:AI制药颠覆医疗,时机已成熟?( 二 )
文章插图
AI制药,时候未到既然人工智能已经展现出了在制药业领域的优势和潜力,为什么人工智能制药产业至今还未密集爆发?反而是人们对人工智能领域不断取得的突破屡见不鲜。对于“人工智能算法因发现了一种强效的新抗生素”之类的头版新闻并不再感到稀奇。新冠肺炎疫情是对人工智能的一块试金石,在协助诊疗和管理上,人工智能的表现可圈可点。然而,对于制药来说,尽管国内有阿里云与全球健康药物研发中心GHDDI合作开发人工智能药物研发和大数据平台,针对冠状病毒的历史药物研发进行数据挖掘与集成,国外有DeepMind使用其AlphaFold人工智能系统来预测和发布与新冠病毒相关的结构。就像人工智能掌握了古老的中国棋盘游戏围棋一样,人工智能在制药上显示了巨大希望。然后呢,并没有答案。此外,尽管科技进步颠覆了移动通讯,个人电脑,互联网和基因测序等等领域,开发新药的成本却在稳步上升。人工智能制药为这个领域吸引了更多投资和更多人才。但随着炒作愈演愈烈,药物开发成本却一路走高。于是,一直以来,看起来很有希望的人工智能技术突破,却并没有带来研发水平的显著提高。人工智能制药似乎依旧不堪大用。究其根本,还在于当今的人工智能存在的固有局限性。对于目前的人工智能来说,其主要还是通过在数据中寻找模式来学习的。通常,输入的数据越多,人工智能就越智能。总部位于旧金山的OpenAI发布的GPT-3算法,只需几个词的提示就可以写出任何主题的连贯段落。值得一提的是,第一版GPT于2018年发布,包含1.17亿个参数。2019年发布的GPT-2包含15亿个参数。相比之下,GPT-3拥有1750亿个参数,比其前身多100倍,比之前最大的同类NLP模型要多10倍。于是,该算法通过分析近5千亿个单词实现了智能。然而这些数据也限制了GPT-3。【 医疗|陈根:AI制药颠覆医疗,时机已成熟?】
文章插图
要实现超自然的性能,一般来说,必须输入模拟特定行为的高质量数据对系统进行训练。这在围棋等游戏中容易实现,每一步都有明确的参数,但在不太可预测的现实生活场景中则要困难得多。这也使得人工智能在应用到现实场景的过程中,经常会遇到困难。疫情期间,在法国、美国等地,人工智能之所以也未能支持政府建立有效的接触者追踪系统的努力,很大一部分原因就是缺少必要的“原料”。在英国,由于缺乏系统的数据采集来追踪和溯源新冠病例,短期内几乎不可能使用人工智能技术实施接触者追踪干预。当然,即便人工智能可以创造出人类急需的药品,改善健康,治疗疾病。但无论是生成强化学习等方法的结合,还是量子计算的迷人前景,都需要生物学、化学以及更多学科的支持。只有保证科学的供给,才能更好地产出科学。生活水平提升引起的人口结构变化和疫苗、抗生素等医学技术的出现加快了人类疾病谱变迁的速度,慢性病取代传染病成为人类主要的疾病负担。目前的医疗卫生体系是人类在对抗传染病和急性病过程中形成的。医学理念、临床干预方式难以应对慢性病的挑战,逐渐表现出效率低下,医疗保健成本高速增长等特征,日趋不堪重负。人工智能技术的巨大突破,融合了深度学习算法、数据建模、大规模GPU并行化平台等技术构成的深度神经网络,能模拟人脑的工作机制。国家可以在提升早期检测准确度、加强诊断和风险控制、降低治疗费用、辅助病人自我健康管理、提升治疗效果等方面给予医疗工作者充分支持。在制药行业从识别生物靶点,设计新分子,到提供个性化治疗和预测临床试验结果方面,人工智能制药更是具有巨大潜力。目前,人工智能制药或许依然会输给传统的生物学和化学,但这并不意味着它还没有准备好进入黄金期。未来,随着医疗大数据的形成与完善,患者检查、诊断、治疗全过程的数字化之后,AI就能通过自动学习来研发药物。可以预见,不久的将来,随着AI制药黄金期的到来,也将给制药这一历史悠久且至关重要的行业带来前所未有的变革。
- 制药领域|为什么AI制药这么火,为什么是现在?
- 资本|2020年中国人工智能医疗行业发展现状分析 处于成长期且资本热度高
- 与健康医疗|智慧医院与人工智能有哪些前沿进展?这场会议都说明白了
- 唐山市人民医院成功举办第五届“加拿大?中国科技与医疗创新论坛”线上分会场活动
- 5G赋能智慧医疗 科大讯飞牵手琶洲试验共建智联网医疗平台
- 健客加速智慧医疗生态圈建设!额外投2亿加码科技创新
- 会议报道丨互联网+医疗来了!中国乙肝防治数字化管理联盟正式成立
- 科亚医疗宋麒:国内第一张医疗AI三类证的诞生
- 苏州长尾兔|鱼跃医疗推动AED普及,挽救生命无处不在
- 守护生命健康,山东移动助力国家健康医疗大数据北方中心建设