医疗|陈根:AI制药颠覆医疗,时机已成熟?

文/陈根人工智能(AI)发展至今,已成为社会生活和生产中一种非常真实的力量。这种力量将会,甚至已经,颠覆了世界上的几乎所有行为。随着机器人、智能手表、智能音箱、虚拟助理等科技产品的出现,人工智能技术的迅猛发展及其在医疗卫生领域的深度应用,将极大改变原有社会的面貌。目前,人工智能在医疗卫生领域广泛应用正形成全球共识。可以说,人工智能以独特的方式捍卫着人类健康福祉。除了在诊疗手术、就医管理、医疗保险领域发挥作用,基于算法的人工智能近年来更是推动着疾病与药物研究的革新,并越来越体现其优势。制药业作为一个古老悠久又对人类至关重要的行业,人工智能何以成为制药业未来趋势?在人工智能制药全面到来之前,制药业还将面临什么挑战?
医疗|陈根:AI制药颠覆医疗,时机已成熟?
文章插图
AI制药,潜力无限制药业是危险与迷人并存的行业。通常,一款药物的研发可以分为药物发现和临床研究两个阶段。在药物发现阶段,需要科学家先建立疾病假说,发现靶点,设计化合物,再是展开临床前研究。而传统药企在药物研发过程中则必须进行大量模拟测试,研发周期长、成本高、成功率低。根据《自然》数据,一款新药的研发成本大约是26亿美元,耗时约10年,而成功率则不到十分之一。其中,仅发现靶点、设计化合物环节,就障碍重重,包括苗头化合物筛选、先导化合物优化、候选化合物的确定、合成等,每一步都面临较高的淘汰率。对于发现靶点来说,需要通过不断的实验筛选,从几百个分子中寻找有治疗效果的化学分子。此外,人类思维有一定趋同性,针对同一个靶点的新药,有时难免结构相近、甚至引发专利诉讼。最后,一种药物,可能需要对成千上万种化合物进行筛选。即便这样,也仅有几种能顺利进入最后的研发环节。然而,通过人工智能技术却可以寻找疾病、基因和药物之间的深层次联系,以降低高昂的研发费用和失败率。基于疾病代谢数据、大规模基因组识别、蛋白组学、代谢组学,AI可以对候选化合物进行虚拟高通量筛选,寻找药物与疾病、疾病与基因的链接关系,提升药物开发效率,提高药物开发的成功率。具体而言,科研人员可以使用人工智能的文本分析功能搜索并剖析海量文献、专利和临床结果,找出潜在的、被忽视的通路、蛋白、机制等与疾病的相关关系,进一步提出新的可供测试的假说,从而找到新机制和新靶点。渐冻人症(ALS)就是由特定基因引起的一类罕见病,而IBM Watson使用人工智能技术来检测数万个基因与ALS的关联性,成功发现了5个与ALS相关的基因,推进了人类对渐冻人症的研究进展(此前医学已发现了3个与ALS相关基因)。在候选化合物方面,人工智能可以进行虚拟筛选,帮助科研人员高效找到活性较高的化合物,提高潜在药物的筛选速度和成功率。比如,美国Atomwise公司使用深度卷积神经网络AtomNet来支持基于结构的药物设计辅助药品研发,通过AI分析药物数据库模拟研发过程,预测潜在的候选药物,评估新药研发风险,预测药物效果。制药公司Astellas与NuMedii公司合作使用基于神经网络的算法寻找新的候选药物、预测疾病的生物标志物。当药物研发经历药物发现阶段,成功进入临床研究阶段时,则进入了整个药物批准程序中最耗时且成本最高的阶段。临床试验分为多阶段进行,包括临床I期(安全性),临床II期(有效性),和临床III期(大规模的安全性和有效性)的测试。传统的临床试验中,招募患者成本很高,信息不对称是需要解决的首要问题。CB Insights的一项调查显示,临床试验延后的最大原因来自人员招募环节,约有80%的试验无法按时找到理想的试药志愿者。临床试验中的一大重要部分,在于严格遵守协议。简言之,如果志愿者未能遵守试验规则,那么必须将相关数据从集合当中删除。否则,一旦未能及时发现,这些包含错误用药背景的数据可能严重歪曲试验结果。此外,保证参与者在正确时间服用正确的药物,对于维护结果的准确性也同样重要。但这些难点却可以在人工智能技术下被解决。比如,人工智能可以利用技术手段从患者医疗记录中提取有效信息,并与正在进行的临床研究进行匹配,从而很大程度上简化了招募过程。对于实验的过程中存在的患者服药依从性无法监测等问题,人工智能技术可以实现对患者的持续性监测,比如利用传感器跟踪药物摄入情况、用图像和面部识别跟踪病人服药依从性。苹果公司就推出了开源框架ResearchKit和CareKit,不仅可以帮助临床试验招募患者,还可以帮助研究人员利用应用程序远程监控患者的健康状况、日常生活等。