4年亏损250亿,“狗神”过的并不好


4年亏损250亿,“狗神”过的并不好
文章插图
作者| 宇多田
出品| 虎嗅科技组
图片为柯洁在2017年乌镇对战Deepmind电脑程序AlphaGo现场。
从2016年3月的一个下午开始,当一个名叫AlphaGo的围棋电脑程序,在两年里,陆续战胜韩国围棋九段职业选手李世石,和当时世界围棋排名第一的中国棋霸柯洁后,关于未来5年里“人工智能技术无所不能”的炒作,便拉开了序幕;
当然,更直接的影响是,全权研发制作了AlphaGo的英国人工智能公司Deepmind,在仅被谷歌收购2年后,便誉满天下,帮谷歌与“人工智能全球最强企业”紧紧绑定在了一起。
但谁也不会想到,Deepmind 来势迅猛的技术声誉,又在未来极短的时间内,转化成了外界对其始终不见商业化有效成果的批判与质疑。
与大多数在2019年进入萧条期和死前挣扎期的国内人工智能公司一样,在更看中自由市场商业化落地的欧美,Deepmind从2016年~2019年共计亏损13.55亿英镑(这还不算上收购的6亿美元,还免除了2019年15亿美元债务),约合人民币118.5亿元(18.38亿美元)。
很显然,亏损总额高达40亿美元(约人民币257亿),让谷歌受到了华尔街的千夫所指。
但是,根据昨天Deepmind在英国政府机构 Companies House 上的最新账目显示,2020年,这家全球人工智能研发能力最强的企业之一,终于迎来了一个关键的商业化临界点:
2020年同比增长率超过300%,达到8.26亿英镑的高收入,终于抹掉了7.8亿左右的支出,实现5年来的首次盈利。

4年亏损250亿,“狗神”过的并不好
文章插图
4年亏损250亿,“狗神”过的并不好】图片来自虎嗅。数据来源:英国公司注册局Companies House;制图:宇多田
但这并不能够证明Deepmind的商业化模式完全步入正轨。
实际上,从2014年被谷歌以6亿美元收购以后,Deepmind作为一家私营商业组织(英国法律有规定,任何年收入超过1020万英镑,资产超过510万英镑,雇员超过50名的私营公司都必须向政府披露财务状况),其绝大部分收入仍然来自谷歌母公司Alphabet给予的订单。
换句话说,它几乎是靠Alphabet的哺育,而非外界客户而生存,商业模式被称为“研发服务”。
而Deepmind此次并没有解释2020年收入增幅如此迅速的原因。
我们只是了解到,Deepmind除了依靠一直以来向谷歌、Youtube出售软件,为后者的数据中心做节能优化,提高安卓设备的电池寿命外,又增加了谷歌地图的合作项目——提高地图里“到达预测时间”的精确度,优化谷歌语音虚拟助手。
很明显,这些项目订单金额并没有一个非常明确的公开付费标准。
另外,也有分析师指出,此次的巨额收入可能要归功于“创造性的会计形式”,简单来说就是财务计算方法做了一些变动。但Deepmind并未对此做任何置评。
另外我们需要注意的一点是,Deepmind每年高达几亿英镑的巨额支出,大部分都投入到“员工成本与其他相关成本”中。其中包括员工的薪资、旅行、办公硬件以及软件。
“Deepmind最值钱的便是一群顶级科学家的大脑,” 一位熟悉Deepmind的消息人士告诉虎嗅,在它全球近千名员工里,很多人的工资可以达到七位数。“对于研究他们绝不会吝啬,这里是科学家的天堂。”
然而,一家以盈利为目的的商业组织,成于研究,也必将受制于研究。
没有头绪的商业发展轨道
Deepmind在人工智能研究领域,特别是针对“深度学习”与“强化学习”这两个重要技术分支研究方面做出的贡献,毫无疑问是必须载入史册的。
就像今年7月Deepmind利用人工智能技术在生化科学领域取得的巨大突破——为35万种蛋白质(包括人类制造的每一种蛋白质)提供了3D结构,这对医学和药物设计大有裨益。

4年亏损250亿,“狗神”过的并不好
文章插图
这是人工智能技术赋予的果蝇蛋白质形状,图片来自纽约时报
这个成绩涉及到困扰了生物学家半个世纪的“蛋白质折叠问题”——1972年,在接受诺贝尔化学奖的演讲中,克里斯蒂安·安芬森做出了一个历史性预测:原则上,仅仅根据组成蛋白质的一维分子链就可以确定蛋白质的三维形状。
然而,虽然如今测定任何特定酶的确切化学成分都不算太难,但要确定它的三维形状,可能需要数年的生化实验。