建模|该把优惠券发送给哪些用户?一文读懂Uplift模型( 二 )


训练样本共用可以使此模型学习更加充分,通过单个模型的学习也可以避免双模型打分累积误差较大的问题。此外模型可以支持干预项为多策略及连续变量的建模,实用性较强。但此模型在本质上依然还是对Response建模,对Uplift的预测还是比较间接。
3. Class Transformation MethodClass Transformation Method模型既可以将实验组与对照组数据打通,同时它又是直接对Uplift score进行预测,计算用户在实验组中购买概率与在对照组中购买概率的差值,其核心思想是将实验组和控制组样本混合并创建新的变量z满足:

  • 当用户在实验组(发券)且用户最终购买时,z=1
  • 当用户在对照组(无干预)且用户最终未购买时,z=1
  • 当用户在实验组(发券)且用户最终未购买时,z=0
  • 当用户在对照组(无干预)且用户最终购买时,z=0
可以证明,P(Z=1│Xi)和Uplift Score是线性正相关的,且当实验组与控制组样本比例为1:1时,Uplift Score =2P(Z=1│Xi)-1,目标从预测UpliftScore转化为了预测P(Z=1│Xi)
三、Uplift模型评估根据Uplift Score的定义,分数越高的用户即所谓的营销增益就越大。增益模型由于不能同时观测同用户在不同干预项下的真实增量,通常是通过划分十分位数来观测实验组用户和对照组用户样本来进行间接评估。
1. Uplift 十分位柱状图将测试集预测出的用户按照Uplift Score由高到低平均分为10组,分别是top 10%用户,top 20%用户……top 100%用户。分别对每个十分位内的用户求实验组和对照组预测分数的均值,然后相减,计算不同分段中真正的实验提升收益。然后根据每个分组得出的实验收益,绘制十分位柱状图。这样,即可较直观观察到有多少的用户大概可以获得多少的营销增益。
建模|该把优惠券发送给哪些用户?一文读懂Uplift模型
文章插图
2. qini曲线(qini curve)计算每组用户百分比的qini系数,将这些系数连接起来,得到一条qini曲线。qini系数公式如:
建模|该把优惠券发送给哪些用户?一文读懂Uplift模型
文章插图
?是按照Uplift Score由高到低排序的用户数量占实验组或对照组用户数量的比例,?= 0.3即表示实验组或对照组中前30%的用户。nt,y=1(?)表示在前百分比多少用户中,实验组中预测结果为购买的用户数量。nc,y=1(?)表示在同样百分比用户中,对照组预测结果为购买的用户数量。Nt和Nc则分别代表实验组和对照组总用户样本数。
建模|该把优惠券发送给哪些用户?一文读懂Uplift模型
文章插图
上图橙色线是随机曲线,qini曲线与随机曲线之间的面积作为评价模型的指标,面积越大表示模型结果远超过随机选择的结果。可以看到当横轴为top40%时,qini曲线与随机曲线之间距离最大,对应的纵轴大概是0.037,表示uplift score等于0.037可以覆盖前40%的用户数量,这部分用户也就是我们可以对其进行营销干预的persuadable用户。
建模|该把优惠券发送给哪些用户?一文读懂Uplift模型】但如果实验组和对照组用户数量不平衡,则会导致指标失真。另一种累积增益曲线可以避免这个问题。
建模|该把优惠券发送给哪些用户?一文读懂Uplift模型
文章插图
最后,我们总结一下Uplift模型可能的应用场景:
  • 精准定位策略敏感人群:如全文所述,我们希望找出来一些对干预项(例如发券、投放等)比较敏感的用户,继而对其进行精准策略/营销;
  • 测算收益空间:Uplift模型可以帮助我们测算如果对策略做一些人群向优化,业务收益将会提升多少;
#专栏作家#赵小洛,公众号:赵小洛洛洛,人人都是产品经理专栏作家。数据分析师一枚。
本文原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议