战略地图|破局智能制造的 9 个场景 | 参数( 三 )


第一步,构建仿真模型:基于历史数据与实时数据,构建脱硫预测模型。通过结合脱硫剂加入量、喷吹速率等十多个关键参数,模拟脱硫全过程,并配合参数优化模型,检验不同组参数的合理性及有效性。
第二步,参数寻优模型:结合机器学习与老师傅的经验,识别脱硫过程中的对脱硫结果影响最大的参数,包括钝化镁加入量、钝化石灰加入配比、平均流量、喷吹时长等,通过寻优模型识别参数间的最优关系。再回归到仿真模型中进行反复验证,最终得到最优参数:在满足脱硫效果的前提下,找到最小脱硫剂加入量的那组“配方”。
第三步,脱硫操作人员根据推送的推荐参数,动态调节脱硫剂的加入量,减少脱硫剂的消耗。
对年产值400万吨钢的攀钢西昌钢钒基地来说,每年减少1700万元损失。
生产工艺优化的解决方案,已经在钢铁、水泥、固废、化工、
光伏等多个行业场景中得到实践。
场景四:能耗优化能耗优化直接关乎“十四五规划和2035远景目标”中“双碳目标”的达成,已经成为流程制造企业发展的重中之重。《中国上市公司碳排放排行榜(2021)》显示,登榜的100家A股和港股上市的高碳排放公司,分布在石化、化工、建材(水泥)、钢铁、有色、造纸、电力、航空八大高耗能行业。八大重点高能耗行业中的六个,都属于“大制造业”。传统制造业的高端化、智能化、绿色化,提高了制造业对新技术的发展要求。
水泥行业有着很高的煤耗和电耗,水泥的“两磨一烧”工艺(生料磨、回转窑与水泥粉磨),是保障水泥品质稳定的主要因素。
战略地图|破局智能制造的 9 个场景 | 参数
文章插图
2021年,海螺水泥作为亚洲最大的水泥熟料供应商,敏锐地洞察到传统的APC(生产优化系统)迭代能力跟不上业务需要,软件适应性不强、数字化沉淀和复用受限,造成全局优化能力不佳的结果,果断利用阿里云工业大脑AICS平台,聚焦于水泥产线的“两磨一烧”核心场景,完成能耗优化和工艺优化,分为下面几步。
第一步:数据采集与清洗。结合工艺专家经验,水泥工业大脑首先将生产系统、控制系统、设备管理系统、能源管理系统中的海量数据进行提取,包括质检数据、DCS数据、环境数据等。同时对数据进行清洗,剔除噪音数据或无效数据,补充缺失数据,为下一步模型训练提供高质量的数据资产。
第二步:模型搭建。采用先进的机器学习算法、神经网络算法,结合先进过程控制模型,对所收集到的多维度数据进行建模,真实还原水泥产线上的实际生产过程。并通过对大数据模型的参数进行调节,以实现从输入参数到输出参数的非线性映射关系。
第三步:机器学习。通过采集六个月的历史数据,分析多达上百个变量之间的耦合关系,并对模型的输出进行预测,使风、煤、料的最佳组合范围可量化、可视化,达到同等产量熟料质量最好;同等质量情况下,产量最高;或是同质同产情况下,能耗最低。
第四步:在线控制。最终生产线工艺参数的设定,会结合工艺参数范围、步长信息、工艺参数实时值等,由水泥工业大脑进行多变量综合分析,实时针对各工况的产量、质量、能耗多目标进行寻优,推荐一组最佳的工艺参数实时反写回分散控制系统,实现水泥核心生产过程的自动驾驶、无人值守。
海螺水泥仅仅两个月时间,就实现了高自动控制的水泥工艺优化。在这个过程中,降低了2%--3%的能耗。对于水泥日产量1.2万吨的工厂来说,这一能耗节省非常可观。在后来的一段时间,逐步完成了全局优化的节能测试。结果显示,该系统的节能水平超过了国外知名厂商同类型软件的节能水平。
以上自适应控制、工艺优化、能耗优化的案例能够清晰地看到,基本解决方案路径:收集历史数据--锁定关键参数--构建算法模型--用实时数据验证算法模型,并进行调优--输出动态参数推荐,或连接自动化控制系统。
路径和方法都是一致的,难度就在于找到海量参数里的因果关系,并构建优质的算法模型,这两个节点的突破,则取决于数据智能的科学家和行业老师傅都具备卓越的专业能力和合作能力,同时需要一套专家知识系统。
场景五:专家知识系统从以上场景,不难发现:在工业领域,传统经验知识的总结环节非常需要数据智能技术的加持。即便是有些制造业企业建立了数字化的专家系统,把专家经验进行文档累积,但是实际情况中,把数据经验输入到专家系统费时费力,每条记录的经验数据之间缺乏联系,仍然很难形成“数据资产”。