战略地图|破局智能制造的 9 个场景 | 参数( 二 )


这些能力全面开放给钉钉生态,在钉钉“制造工作台”“行业广场”上开发千人千面、个性化的工作界面,让企业自主选择符合需求的SaaS应用,让更多类似设备上钉、码上制造、计件日结的创新在钉钉的行业平台上长出来。
中国民营企业500强的东方希望集团于2017年开始使用钉钉,过去五年间,东方希望在钉钉上开发了67个针对不同场景的应用,集成到钉钉上,实时呈现工厂里的生产状况和工艺,一旦出现产线异常,便由钉钉自动通知责任人。
场景二:自适应控制利用生产装备和工艺的自动化是智能制造在过去几十年追求的重要目标,但是由于生产设备和生产现场的复杂性、生产原料的不稳定性和环境变化,生产产线完全依赖传统的PLC(可编程逻辑控制器)、DCS(分散控制系统)很难做到自动控制,依赖产线工人根据经验判断各种异常进行频繁的操作控制,也会因为疲劳和经验的差异出现波动。
融合数据感知和AI决策的自适应控制应运而生。自适应控制基于产线的机理进行建模,根据历史记录,生产结果数据对模型进行训练和优化,将模型下发到生产端根据产线实时数据推理生产参数并推荐,最后结合控制技术对生产线进行闭环控制。
清洁能源行业的瀚蓝环境拥有22个生活垃圾焚烧发电项目,日生活垃圾焚烧发电总规模33100吨。仅是广东佛山南海厂区的六台焚烧锅炉,每天就能“消化”近3000吨垃圾,发电150万度,足以满足南海区16万户40万人的生活用电需求。
整个垃圾焚烧发电的过程,为了尽量做到让垃圾的燃烧更充分、蒸汽更稳定,主要是靠锅炉师傅调节焚烧炉的各种参数。限制发展的最大阻碍,就出在焚烧过程对人工经验的过度依赖。不同工艺专家技术水平不同,调出来的效果相差较大。而培养一位合格的工艺专家需要1--2年的时间,一旦离岗,经验也随之带走。
企业亟需将经验中的隐性数据转化为显性知识,嵌入到自适应控制中,让机器协助人类来完成焚烧过程的复杂决策与控制。垃圾的充分稳定燃烧,过程中充斥着复杂的物理与化学变化,涉及多达2000个实时测点数据。第一步需要大量的数据计算,识别出最关键的30个测点数据,包括推料进程、推料动作、一次风量、一次风压、二次风量、炉膛温度、烟气含氧量、主蒸汽压力等。
第二步,锁定关键参数后,输入到工业大脑平台上的仿真预测模型,进行垃圾焚烧过程的模型训练,实时预测焚烧产生的蒸汽情况。通过对每次垃圾推料的前后关系分析,比如推料前的炉型状态、推料动作,以及推料后的焚烧反应,构建数据的输入输出关系模型。训练过的焚烧炉蒸汽量仿真预测模型可以准确预测90秒后的蒸汽量,准确度到达95%,为后续推料提供决策依据。
第三步,算法模型分析的结果通过API接口把推荐工艺参数实时提供出来。构建人机交互界面,部署到工厂控制室,辅助工人决策什么时候该推料,以及如何推料等操作建议。过去操作员4个小时内需要操作30次,才能让垃圾焚烧过程保持稳定,而如今在AI的协助下,干预6次即可。工业大脑辅助对比单纯人工操作,可以提升约1%--2%的蒸汽产量,锅炉蒸汽量稳定性提升20%。
第四步,算法直接与锅炉系统连接,实现对垃圾焚烧过程的自动控制。由人控制机器转为人监测机器、无需干预,降低对人工经验的依赖。
场景三:工艺优化工艺,是一家企业如何利用生产工具对各种原材料、半成品进行加工或处理,使之成为产品的方法,包括铸造、锻压、机械加工、热处理、焊接、装配、油漆等工艺类别。
一方面,各个行业都有自己的通用数字工具和自动化设备,如CAPP(计算机辅助工艺过程设计系统)。另一方面,企业自主研发创新、经验总结的加工方法,可以成为企业自己的独门秘籍,比如毛坯制作、机械加工、热处理等各个环节先后顺序的优化,都可以提高生产效率、降低生产成本、提升产品质量,是一家工业企业最核心的竞争力。
战略地图|破局智能制造的 9 个场景 | 参数
文章插图
每家制造业企业都规定了产品的工艺路线、机器设备和加工模具的种类、品名及编号、检验方法等,是组织生产和工人进行生产操作的重要依据。
过去20年中国制造业的工艺优化,主要聚焦于两个方面:引进国外的辅助工艺设计系统和培养有经验的专家。今天,则转向了数据智能。
工艺优化的案例是攀钢集团。脱硫是钢铁生产过程中的一个重要环节,硫工艺的好坏可以拿来评判中国钢铁与德国钢铁的重要差距。由于硫化物会降低钢的韧性,所以工人师傅倾向于多加脱硫反应剂。但反应后产生的脱硫渣会带走大量金属料,每个炉次以220吨计,脱硫渣量均值为5吨,其中铁损占比约为40%--55%。假设脱硫剂的加入量降低10%,理论上可降低0.8--1kg/吨的钢料消耗。