3. 通过什么方式发现问题与历史对比:是否符合历史惯例趋势,比如数据一直平稳波动还是突增or突降?
与同期对比:如周同期、月同期,年同期。比如2020年双11期间销售额较去年同期是涨了还是跌了?
与总体对比:比如某个sku盈利情况与所在品类盈利情况的对比,该sku对总体的的贡献率如何?
与竞品对比:与有相同应用场景、相同用户群体、存在竞争关系的产品进行对比,寻找差异点。
与目标对比:与公司目标、部门目标相匹配的可衡量指标进行对比,是否有跟着公司战略方向走?
与经验对比:以经验第一时间迅速洞察问题,比如双11某门店营收不升反降。经验不需要数据支持,但需要敏感的数据思维以及数据分析经验支撑。
与预测对比: 与预测数据的差距是否在正常范围内?
4. 问题拆解与归类工作中面对的问题大大小小会很多,即使是同一个问题也可能会被不同人的发起。每获取一个问题就记录下来,加以归类再去选择性的攻克。
常见的问题归类方式有:
按照四象限法则进行归类:紧急不重要、紧急且重要、不紧急不重要、不紧急重要
按照问题类型进行归类:交易相关、流量相关、用户体验相关、数据安全相关、财务数据相关……
按照优先级进行归类:P0(重要紧急,当前亟待解决)、P1(非紧急,可适当延后腾出时间优先解决P0)、P2(非紧急,可后续再做)……
有时候我们遇到的问题很棘手,大且复杂。一片迷茫,思维混乱。如何着手去解决?这时候,我们需要将复杂的问题“拆而解之”,而非将焦点浮在问题表面,把大问题围绕核心点拆解成可以行动的小问题,找到切入点。
打个比方,某个线上产品营收下降了10%,将10%拆解到各个子产品线、各个地区维度等,拆解出下降由哪方面带来,再针对性的逐个分析。
5. 站在业务角度想问题做分析,很容易陷入一个圈:为了分析而分析。
看到一个问题,会想可以用xx模型、xx技巧、xx模板来分析了。使用了一圈的技能,复杂的过程,密密麻麻的公式等,感动了自己,迷茫了需求方。不是说不能使用,而是要回归业务本质,先从业务角度出发,思考这个问题的价值。分析方法向业务靠拢,而非业务需求向分析方法靠拢。
了解清楚了问题的业务价值,以后最起码可以站在一个更高的公司策略层面的角度,谈论这个问题的核心意义。
我最初做分析的时候,就陷入了这种圈子。辞职的时候,跟领导说不想做这种只跟业务方打交道的分析,也没涉及任何模型,想去做涉及模型的分析。现在想来,好愚昧的想法。
做分析需求不一定需要复杂的模型,反过来,做模型一定需要深入了解业务知识,哪怕数据科学家这种对分析模型深入熟练的角色,也有着深入的业务了解程度。不管怎么说,深入了解业务,不亏。
发现问题之后,有了初步的方向,下一步就是需求确认。
二、 需求确认与梳理1. 确认需求背景了解清楚需求背景,才能明白这个需求的意义,是为了解决什么问题而出发的,不至于迷茫的做分析。需求背景就是需求产生的原因以及想要达成的目标。
需求产生的原因:当前现状是怎样的?为什么会提此需求?遇到了什么问题?
需求要达到的目标: 此需求期望在什么时间通过什么样的方式达到什么样的目标?(when、how、what)
2. 确认指标口径需要确认清楚这个需求涉及什么指标,哪些是核心指标哪些不是核心指标。每个指标的口径是什么,最近有没有更改口径。
比如客单价,即使大家都知道客单价=GMV/用户数,但是不能想当然以为需求方肯定知道,需求方也以为你肯定也知道,双方未核对口径直接开工干活。这样会存在两波客单价口径不一致的风险。分子什么维度、分母什么维度,都需要对清楚。
说白了就是,我以为你知道,你以为我知道,但是,咱们还是要对一下口径。
因为分析角色是干活的一方,需求方是发布需求的一方,所以面对需求,自身需要想的更多些,有些点需求方可能没想到,此时分析师需要具备更多的主动性。引导沟通、多方核对。毕竟,不沟通清楚需求直接干,容易背锅且被投诉,也竹篮打水一场空,浪费了时间。
所以前期不要怕沟通。最好是沉淀成文档,点对点沟通。
3. 确认数据维度数据维度可以理解为研究数据的角度,比如地区、城市、用户名等。
【 宏观|6000字干货|数据分析需求处理详解
- 抖音|(第二节)抖音书单号最新教程,亲手教会你当下书单玩法【纯干货】
- 花束|干货分享:数据挖掘浅谈
- 带货|揭秘爆款带货短视频的套路|超干货,值得收藏
- 客单价|占豪干货:付费和收费,才是最好链接人脉的方式
- 自媒体|自媒体干货分享,新手如何选择领域的三点小建议,最后一点比较重要
- |干货!html定位的几种方式!
- 主板|iPhone用户虽然多,但是知道这些功能的不多,全是干货很实用
- 视角|万字干货!大厂最爱的用户研究方法全方位科普
- 文章|看的干货这么多,真的有用吗?
- 鼠标|双PC干货教程:带鱼屏一键分屏+硬件速切,单双屏键鼠共享,附视频实操!