[生物医学]Cell综述深度解读!机器学习如何带来生物医学研究的变革!
日前 , 一篇刊登在国际杂志Cell上题为“How Machine Learning Will Transform Biomedicine”的综述文章中 , 来自俄勒冈健康科学大学的研究人员论述了机器学习技术在改善疾病诊断和治疗方面的应用 , 文章中 , 研究人员概述了机器学习如何改变生物医学三大领域的 , 即临床诊断、精准疗法和健康监测;其目的是通过监测一系列疾病的发生和正常衰老过程来维持人类机体健康 , 对于每一个领域而言 , 研究人员讨论了机器学习的早期成功应用案例 , 以及机器学习所面临的机遇和挑战 , 当这些挑战得到满足时 , 机器学习或有望成为一种严格、机遇结果的医学手段 , 其有望不断适应个体和环境的差异来进行疾病的诊断并开发有效的策略 。
机器学习技术能利用复杂的算法在大规模、异质性数据集中进行运行 , 从而发现那些即使是训练有素的研究人员也很难或不可能识别出的有用模式 , 这种方法已经在整个科学和社会上有很多应用 , 比如从玩游戏、到产品推荐、再到控制自动驾驶汽车上等;在生物医学方面、人类基因组项目、癌症全基因组项目、国际机器学习竞赛项目等项目上都表现出了巨大的潜力 , 收集并分析与医学疗法和患者预后相关的大量数据集或能将医学转化称为一种数据驱动、以结果为导向的学科 , 其对于疾病的检测、诊断都有着非常深远的影响 。
本文插图
图片来源:Jeremy Goecks, et al. Cell,doi:10.1016/j.cell.2020.03.022
如今 , 分子和表型数据的收集已经变得无处不在 , 包括个体化癌症疗法的基因组检测、器官高分辨率二维和三维解剖成像、组织活检的活组织分析以及监测心率并通知佩戴者异常的智能手表等 , 这些和许多其它收集到的数据对于为未来早期准确地诊断、个体化的治疗以及持续监测以促进机体健康非常重要 。
为了使机器学习在诊断和治疗中发挥变革性的作用 , 研究人员就有必要开发高质量、精心管理的数据集 , 高质量的数据集有几个非常重要的好处 , 其能改善机器学习方法的预测能力 , 同时还能减少训练所需的数据大小及学习的复杂性;比较著名的就是 , 一种名为ImageNet(一种标记图像和逻辑链接图像的语料库)的技术被引入时 , 机器学习方法用于图像识别的速度得到了很大提升 , 当然了 , 在生物医学领域及可能应用机器学习的领域都需要类似的努力 。 为机器学习应用于诊断和疗法创建高质量的数据集需要解决技术、法律和经济的问题 , 而这些问题通常会导致为进行标准化的孤立的生物医学数据 , 正如前所述 , 联邦学习(federated learning)能在孤立系统中提供一种技术解决方案 , 因为这并不需要实际的数据移动 , 而且还能保护个人隐私;可穿戴的设备和家用设备能提供一种收集准确数据的方法 , 而机器学习则可以作为一种预处理步骤 , 从电子健康记录和出版物等非结构化来源中提取准确的分析和临床数据;我们必须鼓励生物医学机构和个人参与数据标准化和共享 , 同样地 , 保险公司、制药行业和支持生物医学研究的结构也会投资基础设施、数据获取和数据管理 , 从而产生高质量供研究的数据 。
同时我们还需要促进用于学习的数据集的多样性和数据的共享方法和激励措施 , 包括国家和国际数据共享标准等 , 其能使主要医疗中心和社区诊所获取数据成为可能;比如 , 由于整体护理和患者群体的差异 , 在主要医疗中心改善患者治疗反应的机器学习应用程序可能会在社区环境中表现不佳 , 然而 , 用于机器学习的生物医学数据的收集的最终目标就是从患者群体中获得合适的代表性数据 , 从而开发精确的机器学习模型 , 并将其推广到不同的人群中 。 同时研究人员还必须作出协调一致的努力来考虑多种变数 , 比如患者在治疗前的状况、治疗方案、年龄、性别、种族、民族和环境暴露等变量等 。
- 身体哪些信号是心血管疾病来临的征兆?医学专家告诉您答案
- 人体缺少什么会造成糖尿病?医学专家一文详细分析,支招防治方法
- 三农财经播报一位退休生物老教师养生保健秘诀:这两食材就够了
- 熊猫医学肝脏如果发生病变,常常会出现4大“迹象”,具体都是指什么?
- 熊猫医学长寿的人,会有哪些表现?要想老得慢,需要做到哪些事?
- 医学界心血管频道BMJ:多泡热水澡对心脏好,每周3次心血管风险就能降20%!
- 健身房别让医学常识缺乏成为健康的绊脚石——髌骨软化是健身房的常客
- 国医学苑又怕冷又上火,上热下寒体质怎么调?中医:引火归元是关键
- 呼吸科大夫胡洋TB建议把这句话当作医学常识记住,原位癌不会复发转移,手术可根治
- 医学界最好的节日礼物:卫生高级考试“过关礼包?”