感受数学模型方法至高深层的美( 二 )



感受数学模型方法至高深层的美

文章插图

早在上个世纪九十年代,笔者就在中文核心期刊《数学通报》(1994.4)上以“模型与解题”为题发文,文中写道:“模型方法是一种经典的方法,并非数学所独有,随着科学技术的数学化趋势,使得模型方法早已超越出了数学的范畴,它广泛地应用于自然科学、工程技术与社会科学的一切领域中 。就数学而言,模型方法早已成为一种独特的数学方法 。”
数学模型方法之美,就在于它把各类问题有机地统一于各个不同的数学模型之中,使得形式各异的问题变得容易通过数学方法予以解决 。这里所说的数学模型,有几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等等 。就解决数学问题,或者说是解数学题的模型而言,则有函数模型、方程模型、不等式模型、数列模型、三角模型、集合模型等,而在函数模型中,又可分为一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等等 。
数学史上运用数学建模方法解决实际问题的例子比比皆是,著名的哥尼斯堡七桥问题便是一个光辉的例证 。事实上,大数学家欧拉非常巧妙的将“普雷格尔河穿城而过,并绕流河中一座小岛而分成两支,河上建了 7 座桥 。当地居民想设计一次散步,从某处出发,经过每座桥回到原地,中间不重复”这个不可能问题转变成一个数学模型,用点和线画出网络状图,证明这种走法不存在,从而解决了这个长期困扰人们的七桥问题 。这个“一笔画”问题的研究和解决,不仅充分体现了拓扑学的思想,而且引发了数学新分支——图论的诞生,在更大意义上引导了图论和拓扑学的发展,折射出数学模型方法应用美的光芒 。
必须指出,数学模型方法是近代才产生的,我们不妨以众人悉知的初等数学解题为例,说明数学模型方法的美妙之处 。依据是笔者曾以“对数学解题的认识与思考”为题在《中学数学月刊》2012 年第 3 期上撰文,文中从审美直觉这种形态层面探讨了解题,所举的例子也是较有代表性的,可参阅 。兹试举例如下: 问题:围建一个面积为 360m2 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为 2m 的进出口,如图所示,已知旧墙的维修费用为 45 元/m,新墙的造价为 180 元/m,设利用的旧墙长度为 x(单位:m),修建此矩形场地围墙的总费用为 y(单位:元) 。
(1)将 y 表示为 x 的函数;
(2)试确定 x,使修建此矩形场地围墙的总费用最小,并求出最小总费用 。

感受数学模型方法至高深层的美

文章插图

先由问题所给定的材料寻找量与量之间的内在联系,再建立起数学模型 。
(1)设矩形的另一边长为 m,则

感受数学模型方法至高深层的美

文章插图

由已知 x a=360, 得 a=360/x ,所以

感受数学模型方法至高深层的美

文章插图

此函数比较复杂,抛开常数项,观察发现具有自变量 x 的另外两项呈现出 x 的倒数形式,审美直觉下,容易想到两项相乘就可去掉 x,于是设法建立或者应用数学模型 。
(2)

感受数学模型方法至高深层的美

文章插图

这里用到了基本不等式模型:a2+b2≥2ab(a,b 为实数)推出的又一个数学模型:
【感受数学模型方法至高深层的美】
感受数学模型方法至高深层的美

文章插图

只是在这个模型中,条件有所变化,就是 a,b 都为正数了 。
∴ y = 225 x +3602/x-360 ≥ 10440,当且仅当 225 x = 3602/x 时,等号成立 。
即当 x=24m 时,修建围墙的总费用最小,最小总费用是 10440 元 。
有意思的是,用这个基本不等式模型,可以解决类似的问题 。比如,
1. 某游泳馆出售冬季学生游泳卡,每张卡 240 元.并规定不记名,每卡每次只限 1 人,每天只限 1 次.某班有 48 名学生,教师准备组织学生集体冬泳,除需要购买若干张游泳卡外,每次去游泳还要包一辆汽车,无论乘坐多少学生,每次的包车费为 40 元.要使每个学生游 8 次,每人最少交多少钱?
2. 某单位用木料制作如图所示的框架, 框架的下部是边长分别为 、 (单位: )的矩形.上部是等腰直角三角形. 要求框架围成的总面积为 . 问 、 分别为多少(精确到 0.001m) 时用料最省?