假的双变量问题

证明不等式的题目中有单变量的,也有双变量的,也有伪装成双变量、其实是单变量的,比如2018年全国I卷理科数学压轴题.

假的双变量问题

第一问按下不表,只说第2问.

1

假的双变量问题

要证明的不等式虽然有两个变量,可是这两个变量并不独立,而是相互依赖.

由第1问可知,这两个变量互为倒数.

运用函数思想,我们化双变量为单变量

同时,我们要擅于使用第1问得到的结论.

假的双变量问题

假的双变量问题

其实,这个函数就是题中给定函数f(x)当a=2时的特例.

由第(1)问知,函数h(x)在(1,+∞)上单调递减.

假的双变量问题

以上是解决问题的通法.

2

拉格朗日中值定理和对数均值不等式

6月8号的晚上,我就收到了两位热心读者对此题的解答.

其中,微信昵称为“高考冲刺”的老朋友给出了用对数均值不等式解决本题的方法.

必须指出,

如果使用对数均值不等式,必须做严格证明

.

下面贴出另一位读者朋友的完整解答(含对数均值不等式的证明).

假的双变量问题

微信昵称为“无畏的希望”的读者朋友,是位数学大神,他采用了

拉格朗日中值定理

来证明本题.

的确,从不等式的形式来看,很适合采用拉氏定理来证明.

还是那句话,如果想用这个定理,除非你会证明,不然会失分严重.

以我了解的有限的信息来看,用拉氏定理证明第2问,证明错了一分没有,证明对了也只给2分.

当然,我了解的情况可能不全面,欢迎参与过阅卷的老师朋友们谈谈评分标准.

假的双变量问题

3

新高考动向

今天高考数学卷公布之后,引得教师群一片吐槽.

基本的意见是说,试卷过于简单,无区分度,命题水准下降.

显然,命题老师换了一拨.

对于新高考的命题动向,我的理解是:

  • 为将来文理科不分做过渡准备,所以文理科有相互融合、相互靠近、相互渗透的趋势.

  • 新教材也要出炉了.新教材的变化,是观察新高考动向的窗口.

  • 更多动向,密切关注,随时调整.

    推荐阅读:函数f(x+1)的自变量是不是x?

    上一篇:又到一年填志愿