按关键词阅读:
但是对于没有约束的三次优化问题,平方和成为寻找局部最优最小解时的重要方法。如果将多项式函数的图形描绘成一条浮动在横轴上方的曲线,它的最低点是对应于变量的特定排列。
这种算法可以快速循环遍历一系列输入,反复测试多项式是否为平方和。此时,算法会将曲线向下拖动,无限趋近于横轴。此时,另一种算法可以快速表明低点的坐标。
此时,Zhang和Ahmadi才将优化问题向前推进了一小步,他们的突破在于发现可以通过平方和检验找到某些多项式的最低点,从而寻找三次函数的局部最优解。
在像这样的三次多项式的图中,一端总是指向负无穷。所以三次方程不可能处处为正,可以用平方和检验。但是Ahmadi和Zhang想出了一种方法,只关注曲线向上的那部分。
Zhang说:“对于三次函数求解的问题,我们总是可以把函数拖到我们想要的位置,解决了三次函数局部最优解的重要理论问题。”
现在,Ahmadi和Zhang正在尝试将这一方法升级为一种更普适的算法来提高实用价值,不仅可以处理二次函数,还有三次函数。这将使程序更加稳定,并提高机器学习任务的性能。
目前,优化问题求解的难点不仅在于目标数比较多的多目标优化,甚至大规模多目标优化,动态多目标优化,偏好众目标优化,还有计算求解的时效问题,工具的普适问题。在处理实际情况下的优化问题中,进一寸有一寸的欢喜。
编译来源:
https://www.quantamagazine.org/surprising-limits-discovered-in-quest-for-optimal-solutions-20211101/
文章插图
雷峰网
【 复杂性|普林斯顿研究“最小值”:平方和的破局,二次和三次优化问题的极限】
稿源:(雷峰网)
【傻大方】网址:/c/1125a51532021.html
标题:复杂性|普林斯顿研究“最小值”:平方和的破局,二次和三次优化问题的极限( 三 )