「龙腾网」英特尔未来计划:热量子比特,冷控制芯片和快速测试( 三 )


Spectrum: One of the improvements to qubits recently was the development of “hot” silicon qubits. Can you explain their significance?Spectrum: 最近对量子比特的改进之一是开发了“热”硅量子比特 。你能解释一下它们的意义吗?
「龙腾网」英特尔未来计划:热量子比特,冷控制芯片和快速测试文章插图
「龙腾网」英特尔未来计划:热量子比特,冷控制芯片和快速测试文章插图
Now, imagine if we can operate our qubit slightly warmer. And by slightly warmer, I mean maybe 1 kelvin. All of a sudden, the cooling capacity of our fridge becomes much greater. The cooling capacity of our fridge at 10 millikelvin is roughly a milliwatt. That's not a lot of power. At 1 kelvin, it’s probably a couple of watts. So, if we can operate at higher temperatures, we can then place control electronics in very close proximity to our qubit chip.现在 , 想象一下 , 如果我们能够在稍微温暖一点的温度下操作我们的量子比特 。稍微暖和一点 , 我是说1开尔文 。这意味着我们制冷机的冷却容量突然变大了 。我们的制冷机在10毫开尔文的冷却能力大约是1毫瓦 。那不是很大的功率 。在1开尔文 , 冷却能力可能是几瓦 。因此 , 如果我们能在更高的温度下工作 , 那么我们就可以把控制电子放置在非常接近我们的量子比特芯片的地方 。
「龙腾网」英特尔未来计划:热量子比特,冷控制芯片和快速测试文章插图
Spectrum: Are hot qubits structurally the same as regular silicon spin qubits?Spectrum: 热量子比特在结构上是否与通常的硅自旋量子比特相同?
Clarke: Within silicon spin qubits, there are several different types of materials, some are what I would call silicon MOS-type qubits— very similar to today’s transistor materials. In other silicon spin qubits you have silicon that’s buried below a layer of silicon germanium. We’ll call that a buried channel device. Each have their benefits and challenges.Clarke: 在硅自旋量子比特中 , 有几种不同类型的材料 , 有些是我所说的硅MOS型量子比特-非常类似于今天的晶体管材料 。在其他硅自旋量子比特中 , 硅被埋在一层硅锗下面 。我们把它叫做暗埋通道装置 。每种都有自己的优点和挑战 。
We’ve done a lot of work with TU Delft working on a certain type of [silicon MOS] material system, which is a little different than most in the community are studying [and lets us] operate the system at a slightly higher temperature.我们和代尔夫特工业大学已经在某种类型的[硅MOS]材料系统做了很多工作 , 它与大多数同行正在研究的有点不同 , 它使我们能够在一个稍高的温度操纵系统 。
I loved the quantum supremacy work. I really did. It’s good for our community. But it’s a contrived problem, on a brute force system, where the wiring is a mess (or at least complex).我喜欢关于量子霸权的工作 。我真的喜欢 。这对我们这个行业有好处 。但这是在一个蛮力系统上人造的问题 , 那里的布线是混乱的(或者至少是复杂的) 。
What we’re trying to do with the hot qubits and with the Horse Ridge chip is put us on a path to scaling that will get us to a useful quantum computer that will change your life or mine. We’ll call that quantum practicality.我们试图用热量子比特和马岭芯片做的是让我们走上一条规模化的道路 , 这将使我们拥有一台有用的量子计算机 , 这将改变你的生活或我的生活 。我们称之为量子实用性 。
Spectrum: What do you think you’re going to work on next most intensely?Spectrum: 你认为下一步你迫切要做的是什么?
Clarke: In other words, “What keeps Jim up at night?”Clarke:换句话说 , “是什么让我晚上不睡觉?”
「龙腾网」英特尔未来计划:热量子比特,冷控制芯片和快速测试文章插图
Compare that to what we do for transistors: We take a 300-millimeter wafer, put it on a probe station, and after 2 hours we have thousands and thousands of data points across the wafer that tells us something about our yield, our uniformity, and our performance.与我们对晶体管所做的比较:我们拿一个300毫米的晶片 , 把它放在探测台上 , 2小时后 , 我们关于晶片有成千上万个数据点 , 告诉我们一些关于我们的产量、均匀性和性能的事情 。
「龙腾网」英特尔未来计划:热量子比特,冷控制芯片和快速测试文章插图
What this will do is speed up our time-to-information by a factor of up to 10,000. So instead of wire bonding a single sample, putting it in the fridge, taking a week to study it, or even a few days to study it, we’re going to be able to put a 300-millimeter wafer into this unit and over the course of an evening step and scan. So we’re going to get a tremendous increase in throughput. I would say a 100 X improvement. My engineers would say 10,000. I’ll leave that as a challenge for them to impress me beyond the 100.这将使我们的信息时间比增大1万倍 。因此 , 我们不会用电线连接单个样品、把它放在制冷机里、花一个星期的时间来研究它、或者几天的时间来研究它 , 我们将能够在这个单元中放置一个300毫米的晶片 , 并进行一晚上的步进和扫描过程 。因此 , 我们将获得巨大的生产量增长 。我想说100倍的提升 。我的工程师会说10000倍 。我会把它作为一个挑战留给他们 , 给我留下超过100的印象 。