使能|AI使能医学,脑动脉瘤检测重大突破


使能|AI使能医学,脑动脉瘤检测重大突破
文章插图
“人工智能+医学影像”再添来自中国的新成果。
日前,放射学领域的国际顶级期刊Radiology(《放射学》)在线发表了一项来自华为云EI创新孵化Lab团队联合华中科技大学电信学院、华中科技大学同济医学院附属协和医院放射科的最新研究成果:AI算法检测动脉瘤灵敏度高达97.5%,帮助医生临床诊断灵敏度提升约10个百分点,漏诊率降低5个百分点。
Radiology杂志为放射学领域的顶级期刊,一直被公认为该领域最新、最高质量研究的权威参考,2020年最新影响因子为7.9,是该领域内被引用次数最多的期刊之一。
该论文题为《基于深度学习的CT血管造影脑动脉瘤检测算法》(“Deep Learning-Based Algorithm for Detecting Cerebral Aneurysms on CT Angiography Images”),阐述了一种基于CTA影像的全自动化、高度敏感的脑动脉瘤检测算法。
论文链接:https://pubs.rsna.org/doi/10.1148/radiol.2020192154
使能|AI使能医学,脑动脉瘤检测重大突破
文章插图
Radiology最新发布华为云、华中科技大学最新联合医疗研究成果
脑动脉瘤辅诊:“人工智能+医学影像”新突破
“人工智能+医学影像”,是将目前最先进的人工智能技术应用于医学影像诊断中,帮助医生诊断患者病情的人工智能具体应用场景,可以广泛用于各类病灶识别与标注,如宫颈癌、肺部结节、心脑血管疾病辅诊等。
脑动脉瘤是脑动脉内腔的局限性异常扩大造成的一种瘤状突出,存在渗漏或破裂风险,位居脑血管疾病病因中的Top3位置,堪称是沉默又致命的杀手。脑动脉瘤造成了大约80%-90%的非创伤性蛛网膜下腔出血这一严重的脑部疾病,死亡率为23%-51%,另外还有10%-20%的永久残疾风险,对其进行早期诊断与治疗非常必要。动脉瘤位置多发,形态多样,对医生资历要求较高。中国人口基数大,高资历医生匮乏,相关医生工作强度极大。
动脉瘤破裂的风险取决于动脉瘤的大小、形状和位置,因此脑动脉瘤的检测和特征提取是指导治疗的关键。
CT血管造影成像(CTA)目前是评估颅内动脉瘤的主要影像学检查手段,与磁共振血管造影(MRA)相比, CTA是一种快速且经济有效的诊断技术,通常具有更广的可用性和较高的空间分辨率。与数字减影血管造影(DSA)相比,CTA通常更广泛且无创性,但是由于脑动脉瘤体积小和颅内血管的复杂性,即使专业的放射学专家进行诊断也需要耗费很长的时间,一些小动脉瘤还可能被遗漏。
文章显示,华为云EI创新孵化Lab团队联合华中科技大学电信学院、华中科技大学同济医学院附属协和医院放射科运用华为云一站式AI开发平台ModelArts,开发了一套基于CTA影像的全自动化、高度敏感的脑动脉瘤检测算法。
ModelArts平台提供数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
该算法含有一个编码器和解码器,并在编码器解码器中间使用了密集的空洞卷积(DAC)和残差多核池化(RMP)模块。输入的CTA图像被重采样至0.39×0.39×0.39mm3的分辨率,算法输出会给出动脉瘤存在概率、动脉瘤位置以及直径大小等信息,并在CTA原始图像上为可疑的动脉瘤勾画出一个边界框。
使能|AI使能医学,脑动脉瘤检测重大突破
文章插图
该研究中使用了534名患者的CTA数据来训练深度学习检测算法,然后在另外534例数据上进行验证。验证集共含有649个动脉瘤,该研究算法检测出来了633个,灵敏度达到97.5%;同时算法还检测出了8个新的动脉瘤,而这些动脉瘤在医生最初的诊断中被忽略了。这8个动脉瘤有6个直径小于3mm,2个在3-5mm之间,说明该研究算法对于微小动脉瘤也具体非常好的性能。
使能|AI使能医学,脑动脉瘤检测重大突破
文章插图
使能|AI使能医学,脑动脉瘤检测重大突破
文章插图
同时,为了验证本研究算法对放射科医生的协助作用,另外收集了400例CTA数据作为外部测试集(188个阳性和212个阴性),由四名放射科医生分别在没有算法协助和有算法协助下进行阅片。统计结果显示,在有算法协助的情形下,放射科医生的表现都有一定的提升,特别是对那些经验较少的医生进步最明显。
使能|AI使能医学,脑动脉瘤检测重大突破
文章插图
帮助影像科医生,而不是取代他们
参与该联合项目的华中科技大学同济医学院附属协和医院影像科专家龙茜博士表示:“我们联合华为云开发的深度学习算法在检测动脉瘤方面表现出了出色的性能。我们发现极少数动脉瘤在最初的临床诊断报告中被忽略了,但它们被深度学习算法成功地识别出来了。”