中国|中国提出的AI方法影响越来越大,天大等从大量文献中挖掘AI发展规律( 九 )


[4] Masaki Eto. 2016. Rough co-citation as a measure of relationship to expand co-citation networks for scientific paper searches. Proceedings of the Association for Information Science and Technology 53, 1 (2016), 1–4. https://doi.org/10.1002/pra2.2016.14505301131
[5] Thomas L Griffiths and Mark Steyvers. 2004. Finding scientific topics. Proceedings of the National academy of Sciences 101, suppl 1 (2004), 5228–5235. https://doi.org/10.1073/pnas.0307752101
[6] David Hall, Dan Jurafsky, and Christopher D Manning. 2008. Studying the history of ideas using topic models. In Proceedings of the 2008 conference on empirical methods in natural language processing. 363–371. https://doi.org/10.3115/1613715.1613763
[7] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. 2019. How generative adversarial networks and their variants work: An overview. ACM Computing Surveys (CSUR) 52, 1 (2019), 1–43. https://doi.org/10.1145/3301282
[9] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu. 2020. A survey on knowledge graphs: Representation, acquisition and applications. arXiv preprint arXiv:2002.00388 (2020).
[10] John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth International Conference on Machine Learning. 282–289.
[11] Daniel D Lee and H Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. In Advances in neural information processing systems. 556–562.
[12] Xinyi Li, Yifan Chen, Benjamin Pettit, and Maarten De Rijke. 2019. Personalised reranking of paper recommendations using paper content and user behavior. ACM Transactions on Information Systems (TOIS) 37, 3 (2019), 1–23. https://doi.org/10.1145/3312528
[13] Jiaying Liu, Jing Ren, Wenqing Zheng, Lianhua Chi, Ivan Lee, and Feng Xia. 2020. Web of scholars: A scholar knowledge graph. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2153–2156. https://doi.org/10.1145/3397271.3401405
[15] Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354 (2016).
[16] Andrew Y Ng, Michael I Jordan, and YairWeiss. 2002. On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems. 849–856.
[17] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543. https://doi.org/10.3115/v1/D14-1162
[20] Lei Shi, Hanghang Tong, Jie Tang, and Chuang Lin. 2015. Vegas: Visual influence graph summarization on citation networks. IEEE Transactions on Knowledge and Data Engineering 27, 12 (2015), 3417–3431. https://doi.org/10.1109/TKDE.2015.2453957
[21] Mark Steyvers, Padhraic Smyth, Michal Rosen-Zvi, and Thomas Griffiths. 2004. Probabilistic author-topic models for information discovery. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 306–315. https://doi.org/10.1145/1014052.1014087
[22] Cassidy R Sugimoto, Daifeng Li, Terrell G Russell, S Craig Finlay, and Ying Ding. 2011. The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation. Journal of the American Society for Information Science and Technology 62, 1 (2011), 185–204. https://doi.org/10.1002/asi.21435
[23] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnetminer: extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 990–998. https://doi.org/10.1145/1401890.1402008
[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ?ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.
[26] Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to estimate future citations for literature. In Proceedings of the 20th ACM international conference on Information and knowledge management. 1247–1252. https://doi.org/10.1145/2063576.2063757
[28] Hanwen Zha, Wenhu Chen, Keqian Li, and Xifeng Yan. 2019. Mining Algorithm Roadmap in Scientific Publications. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1083–1092. https://doi.org/10.1145/3292500.3330913
[29] Huan Zhao, Xueying Tian, Lingjuan He, Yan Li, Wenjuan Pu, Qiaozhen Liu, Juan Tang, Jiaying Wu, Xin Cheng, Yang Liu, et al. 2018. Apj+ vessels drive tumor growth and represent a tractable therapeutic target. Cell reports 25, 5 (2018), 1241–1254. https://doi.org/10.1016/j.celrep.2018.10.015