中国|中国提出的AI方法影响越来越大,天大等从大量文献中挖掘AI发展规律( 八 )
图 14 是'GAN' 簇中的方法路径图。经与 Hong 等人 [7] 发表的文献内容核对,'GAN' 簇中方法的路径图包含上述论文提到的 75% 的生成对抗类算法。此外,由图 14 可以直观看到每个方法的提出时间,例如:GAN 是 2014 年提出的,DCGAN 是 2016 年提出的。同时,我们可以看到 DCGAN 方法节点的出度最大。一方面说明很多方法比如 AdaGAN、SNDCGAN 是从 DCGAN 受到启发,进而拓展出新方法。另一方面,也可以发现,DCGAN 作为生成对抗的代表性方法,很多新提出来的生成对抗类方法常与 DCGAN 进行对比。此外,从图中,我们也可以看出'GAN' 簇中的方法使用的数据集情况。
4.3.2 研究场景簇的结果
由 3.6 节中的公式 1,我们得到了研究场景簇之间的相互影响强度比率。考虑到只被 1 篇原始文献影响或者包含的研究场景数量过少的研究场景簇含有的信息量不多,包含的研究场景数量过多的研究场景簇内含有的研究场景信息比较杂乱。为保证结果的合理性,我们只对包含的场景数量介于 15-20 之间(包含 15 和 20)的研究场景簇进行分析。
得到最容易受其他研究场景簇影响的 top3 研究场景簇:颜色恒常性、图像记忆性预测、多核学习,以及最不容易受其他研究场景簇影响的 top3 研究场景簇:显著性检测、行人重识别、人脸识别。
由 3.6 节中的公式 2 和 3,我们对由 45,215 篇论文提出的有效方法对其他研究场景簇的影响强度和影响强度比率分别进行了计算。每年影响强度最大的方法信息如表 7 所示,每年影响强度比率最大的方法信息如表 8 所示。
文章插图
Table 7:每年影响强度最大的方法信息
文章插图
Table 8:每年影响强度比率最大的方法信息
由表 7 和表 8 我们可以发现,2005-2019 年每年对其他研究场景簇影响强度最大的方法中,有 12 个方法都与计算机视觉相关;影响强度比率最大的方法中,有 10 个方法都与计算机视觉相关。这说明计算机视觉类方法相对于其他类方法而言更容易影响其他研究场景簇。此外,从出版地点角度来看,表 7 中的 15 篇文献中 12 篇来自于 A 类出版地点,表 8 中的 15 篇文献中 14 篇来自于 A 类出版地点,这说明A 类出版地点提出的方法更容易对其他研究场景簇产生影响。
5 结论和未来工作
本文借鉴生物领域中通过标记物来追踪反应过程中物质和细胞的变化,从而获取反应特征和规律的思想,将 AI 文献中的方法、数据集、指标实体作为 AI 领域的标记物,利用这三种同粒度命名实体在具体研究过程中的踪迹来研究 AI 领域的发展变化情况。
我们首先利用 AI 标记抽取模型对 122,446 篇论文中方法章节和实验章节的 AI 标记进行提取,对提取的有效方法和数据集进行统计分析,获得反映 AI 领域年度发展情况的重要信息。其次,我们对有效方法和数据集进行了原始文献的溯源,对原始文献进行了计量分析。并挖掘了有效方法在数据集上和在国家之间的传播规律。发现新加坡、以色列、瑞士等国家提出的有效方法数量相对很多;随着时间的发展,有效方法在应用在不同数据集上的速度越来越快;中国提出的有效方法对其他国家的影响力越来越大,而法国恰好相反。最后,我们将数据集和指标进行组合作为 AI 研究场景,对方法和研究场景分别进行聚类。基于方法聚类及关联数据集绘制路径图,研究同类方法的演化关系。基于研究场景的聚类结果来分析方法对研究场景以及研究场景之间的影响程度,发现显著性检测这种经典的计算机视觉研究场景最不容易受其他研究场景的影响。
在以后的工作中,我们将对 AI 标记抽取模型进行改进,优化其抽取性能,并尝试从 AI 文献的表格、图像等部分提取 AI 标记,更全面、准确地实现对 AI 标记的提取,进而更准确地展示 AI 领域的发展情况。
参考文献
[1] Fatemah Alghamedy and Jun Zhang. 2018. Enhance NMF-based recommendation systems with social information imputation. Computer Science & Information Technology (CS & IT). AIRCC (2018), 37–54. https://doi.org/10.5121/csit.2018.81503
[2] Dheeru Dua, YizhongWang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2019. DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv preprint arXiv:1903.00161 (2019).
[3] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith. 2015. Transition-based dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075 (2015).
- 智能手机市场|华为再拿第一!27%的份额领跑全行业,苹果8%排在第四名!
- 空调|让格力、海尔都担忧,中国取暖“新潮物”强势来袭,空调将成闲置品?
- 会员|美容院使用会员管理软件给顾客更好的消费体验!
- 行业|现在行业内客服托管费用是怎么算的
- 人民币|天猫国际新增“服务大类”,知舟集团提醒入驻这些类目的要注意
- 国外|坐拥77件专利,打破国外的垄断,造出中国最先进的家电芯片
- 手机基带|为了5G降低4G网速?中国移动回应来了:罪魁祸首不是运营商
- 通气会|12月4~6日,2020中国信息通信大会将在成都举行
- 技术|做“视频”绿厂是专业的,这项技术获人民日报评论点赞
- 面临|“熟悉的陌生人”不该被边缘化