按关键词阅读:
文章插图
越来越复杂的实验和日益增长的数据为科学探索带来了新的挑战,而实验表明,机器学习,尤其是深度神经网络架构的通用性能够解决广泛且复杂的问题, ImageNet 等大型数据集的激增,引导了许多不同深度学习方法的深入探索。
这篇综述论文重点关注机器学习和实验设计的融合,以及如何通过加速数据处理、实时决策来解决关键的科学问题。
在过去几年,许多机器学习的进步源于异构计算硬件的使用,特别是图形处理器(GPUs)使大型机器学习算法得以快速进步。经过大数据集训练的AI模型已经能够执行复杂的任务,同时,以减少计算量而实现快速和高效训练的新型深度学习算法也开始越来越多的出现。
强大的机器学习技术与实验设计的结合,可以缩短科学发现的时间,从嵌入实时特征到跨分布式网络,计算数据中心的大规模机器学习在许多不同的科学应用实验上取得大的跨越。不过,高效的解决方案依然需要领域专家、机器学习研究人员和计算机架构设计师之间的共同合作。
随着机器学习工具变得越来越复杂,如何构建大模型来解决复杂的问题成为了新得关注点,例如语言翻译和语音识别,它们的出现使得科学应用在快速发展中广泛收益。目前这些应用已经出现多样化,因为人们不得不意识到如何调整他们的科学方法从而更好地利用人工智能的好处,包括人工智能对事件的实时分类能力,如识别粒子碰撞或引力波合并;包括系统控制,如来自等离子体和粒子加速器的反馈机制的响应控制。在这些所有情况下,机器学习都是以设计目标为驱动因素的。
考虑到文章篇幅,我们将从三个部分对整篇综述报告进行呈现,第一,机器学习如何探索广泛的科学问题;第二,快速机器学习作为一种颠覆性技术,如何改变我们处理数据的方式,通用的数据表示法和实验程序有哪些。第三,从算法设计到系统架构的硬件对机器学习进行整体设计。
基础物理学
正如爱因斯坦在 1916 年预测的那样,引力波在广义相对论中表现为时空度量的变化,并在时空结构中以光速进行传播。例如,美国激光干涉引力波天文台(LIGO)、欧洲“处女座”(Virgo)引力波探测器和日本神冈引力波探测器(KAGRA)均采用公里级激光干涉仪网络探测引力波。
引力波为基础物理研究提供了一种独特的方法,包括在强场域测试广义相对论、引力波的传播速度和极化、物质在核密度下的状态、黑洞的形成、量子引力效应等,它以一种与电磁和中微子天文学相辅相成的方式,打开了全新观察宇宙的窗口。在未来的观察中,LIGO、Virgo 和 KAGRA 将探测到越来越多的引力波后备,但这对当前的检测框架提出了计算挑战,该框架依赖于匹配滤波技术,需要将来自模拟的参数化波形(模板)与引力波时间序列数据相匹配 。
随着仪器低频灵敏度的提高,以及引力波搜索参数空间扩展到自旋效应和低质量致密物体,匹配滤波尺度将变差。为了估测引力波的物理特性,迄今为止一直使用随机贝叶斯后验采样器(比如马尔可夫链蒙特卡罗法和嵌套采样法)。这些分析方法可能需要数小时到数天才能完成,搜索和参数估计也产生了不可避免的延迟,进而可能阻碍时间敏感源(如双星、超新星和其他未知系统)的电磁跟踪。
稿源:(雷锋网)
【傻大方】网址:http://www.shadafang.com/c/110394261H021.html
标题:算法|从引力波探测到RNA测序,AI如何加速科学发现