按关键词阅读:
此外,引力波瞬态的观测也容易受到环境和仪器噪声的影响。瞬态噪声伪影可能被误识为潜在来源,特别是当引力波瞬态具有未知的形态时(例如超新星、中子星故障)。仪器噪声谱中的线路噪声会影响对连续引力波(如自旋中子星)和随机引力波(例如未解的致密双星系统引力波的天体物理背景)的搜索。这些噪声源很难模拟,目前的噪声减除技术不足以去除更复杂的噪声源,如线路噪声和非平稳噪声源。
近年来,机器学习算法在引力波物理学的不同领域进行了探索。卷积神经网络已被应用于探测和分类二元结的引力波、 超新星核坍塌的爆发引力波以及连续引力波;递归神经网络(RNNs)的自动编码器使用无监督策略检测引力波;FPGA递归神经网络在引力波低延迟检测方面发挥着潜力。
此外,概率生成机器学习模型用于引力波参数估计的后验采样,在模拟数据上取得与贝叶斯采样器相当的性能,大大缩短了完成时间。机器学习算法也被用于提高引力波数据质量,减少噪声。瞬态噪声伪影可以通过时频变换和恒Q变换或检查LIGO的辅助通道来进行识别和分类。
尽管机器学习算法在引力波数据分析中显示出了很大的潜力,但其中许多算法仍处于概念验证阶段,尚未成功应用于实时分析。目前需要努力的方向是,为了降低低延迟分析创建计算基础设施,提高训练数据的质量(例如扩展参数空间,使用更真实的噪声模型),并更好地量化这些算法在较长的数据延伸上的性能。
生物医学工程
由于高分辨率和高通量生物医学设备的进步,我们已经看到生物医学数据的爆炸式增长,如生物医学图像、基因组序列和蛋白质结构。各种机器学习算法已经被广泛应用于医疗场景中,如AI增强现实显微镜能够自动分析细胞图像和实时表征细胞。机器学习用硅片预测荧光标记、无标记罕见细胞分类、形态表征和RNA测序。对于原位细胞分选、实时治疗反应预测和增强现实显微镜辅助诊断,深度学习模型的数据结构也能够大幅提高速度和效率。
现阶段,机器学习临床应用面临的主要挑战是训练和测试数据不足。对于需要专家知识的超大图像和视频数据集,医学数据标注过程既耗时又昂贵。训练模型推理的延迟也给实时诊断和手术操作带来了计算困难,而时间关键型医疗保健的服务质量要求小于300毫秒,就像实时视频通信一样。为了达到每秒60帧(FPS)的高质量医疗视频,深度学习模型的效率和性能变得至关重要。
推理精度和速度是机器学习算法需要改进的主要方面。一些先进的机器学习模型可以达到很高的推理速度。如常用于医学成像的对象检测模型YOLOv3-tiny,可以在标准数据集上以超过200 FPS的速度处理图像;基于GPU和FPGA的分布式无线传感器网络和基于5G高速Wi-Fi的机器学习模型都部署在医疗AI应用中。用于脑卒中、血栓形成、结肠息肉、癌症和癫痫快速诊断的机器学习模型显著减少了病灶检测和临床决策的时间。实时人工智能辅助手术可以改进围手术期工作流程,实现视频分割、手术器械检测、组织变形可视化。高速机器学习在远程诊断、手术和监测等数字健康领域发挥着至关重要的作用。
无线网络和边缘计算
在许多科学研究中,无线设备和服务已经成为收集和传递大数据的关键工具。此外,移动信息已被证明在了解人类活动及其对环境和公共健康的影响方面十分有用。数据流量的指数级增长给无线基础设施带来了巨大的压力。特别是,小区间干扰大大影响了可靠性和延迟性。为了满足用户对数据通信和增值AI/机器学习业务的需求,无线提供商必须:1) 开发更智能的无线电资源管理学习算法,以适应复杂多变的通信量和干扰条件; 2)在边缘设备上实现大量机器学习/AI计算和功能,以达到更低的延迟和更高的通信效率。
机器学习模型的常规实现,尤其是深度学习算法,远远落后于实用程序的数据包级动态。为了提高效率,现有的机器学习/AI服务通常在云中执行,但代价是通信开销大和延迟高。无线网络和边缘计算面临的主要挑战是如何构建可以在小型蜂窝接入点内以低于10毫秒的低延迟执行复杂任务的计算平台。
研究人员提出了许多种学习算法,希望通过神经网络完成特定的无线电资源管理任务。最初训练神经网络控制电力传输采用的是监督学习。最近,有人提议采用深度强化学习可以更好地改善通路和网络的不确定性问题,而且只需要少量先验训练数据。
【 算法|从引力波探测到RNA测序,AI如何加速科学发现
稿源:(雷锋网)
【傻大方】网址:http://www.shadafang.com/c/110394261H021.html
标题:算法|从引力波探测到RNA测序,AI如何加速科学发现( 二 )