按关键词阅读:
与其他领域相比,这两个领域中生成的数据大小可以被认为相对较小(从100s Mb/s到10s Gb/s)。高光谱数据被用于许多天文学应用、医学成像和电子显微镜领域,用于实现更多的材料科学设计和发现应用。
如图7所示,电子显微镜中显示的是高光谱数据。将电子探针栅格化在所研究的样品上,并在像素探测器上捕获衍射图。当电子探针在样品上扫描时,像素探测器进行图像捕捉。新兴的多信使天文学应用进一步提升了高光谱数据表达的效用,这些数据表达是结合了大量探测器和望远镜的观测结果汇总而成。
文章插图
同时,由于编程新硬件领域发展迅速,作者以一个具体示例阐明设备家族面临的选择和挑战:即现场可编程门阵列(FPGA),希望从FPGA的细节中,为读者了解软件设计的基本方法提供帮助。本文将以用于高效部署机器学习模型的系统方法为例进行简单介绍。
科学领域中的许多机器学习问题要求延迟时间短,资源较为有限。然而,大多数现有的先进CNN模型延迟度非常高,且占用内存大,消耗量高。出于上述原因,实践者被迫使用非理想精度的次优模型(例如浅层CNN)来避免这一延迟问题。大量的文献致力于通过解决上述延迟问题,以提升CNN模型有效性,大致归纳如下:
1、设计全新的高效NN架构;2、 NN架构与硬件的协同设计;3、量化(低精度推断);4、剪枝和稀疏推断;5、知识蒸馏。
作者在文中阐述了需要在高吞吐量和低延迟环境下的机器学习算法,既包括系统设计和培训,也包括机器学习模型的高效部署和应用。在硬件应用方面主要讨论了两类内容:现有的传统CMOS技术和超CMOS技术。在常规的CMOS案例中,在摩尔定律的基础上,人们重点研究机器学习设计的先进硬件架构。对于众多硬件来说,机器学习算法的协同设计是特定科学领域对硬件(包括其体系结构和可编程性)要求的关键,一个高度相关和极其重要的硬件平台的示例就是FPGA,作者认为,这些技术提供了令人兴奋和超级高效的技术,虽然它们可能具有投机性,但相对于常规技术,已经大幅提升了现有的技术水平。
机器学习的训练和部署手段以及计算机体系结构都是一个非常迅速发展的领域,新的任务接踵而至。在机器学习和科学领域中不断引入新方法,同时理解不同硬件下新算法的协同设计以及部署这些算法的工具流的易用性就显得尤为重要。这里的创新之处将快速和广泛采用强大的新机器学习硬件得以实现。在超CMOS技术的情况下,这些应用性设计是很重要的,同时也要考虑到技术的成熟程度、融入计算体系结构以及如何编程这类器件。
我们期待着在不久的将来能够重温这些话题,看看在应用程序、机器学习技术和硬件平台领域的发展速度——最重要的是它们的融合,在科学上领域上取得的颠覆性突破。
注:这篇综述报告是第二届年度Fast Machine Learning大会的概述,汇集了从粒子物理学家、材料学家到健康监测研究人员,以及机器学习学者和计算机系统架构师等多个科学专家的内容,希望通过专家观点和概念找到特定领域应用、机器学习、实验和计算机系统架构之间汇合点,以加快科学发现。以下是整篇报告的具体章节:
稿源:(雷锋网)
【傻大方】网址:http://www.shadafang.com/c/110394261H021.html
标题:算法|从引力波探测到RNA测序,AI如何加速科学发现( 四 )