“云智一体”的“全栈”模式,才是AI开发的主流形态产业智能化大潮已起,AI与产业快速、广泛、深入地融合。企业如何构建面向未来的AI开发平台?在AI开发时要关注什么?百度智能云日前发布《“云智一体”技术与应用解析系列白皮书-企业开发篇》(以下简称《“云智一体”白皮书》),其在报告中建议:企业在选择并建设适应未来发展趋势的AI开发平台时,要关注“场景先行、自主创新、效能为要”三个关键要素,进行统一规划和建设。
文章插图
具体来说,“全栈式AI开发平台”,是企业AI开发的最优解。
首先,企业AI开发呈现出“定制化”趋势。
不同企业的业务场景极度复杂, 就像前文的例子,国家电网要将AI应用到发电、输变电、配用电、电网安全与控制、企业经营管理、政府社会服务等诸多场景,涉及到自然语言处理、深度学习、机器视觉、智能语音、知识图谱等不同AI技术,通用模型不可能满足其AI开发需求。
有定制化AI需求的不只是国家电网。根据2018年百度与波士顿咨询公司的联合调研,市场上86%的需求为定制AI需求,2017年到2020年定制AI模型激增6倍多。
文章插图
要满足企业定制化AI需求,AI开发平台就要具有通用性的基础能力,且可被轻松解耦、嵌入、移植与迭代。据《“云智一体”白皮书》介绍,百度智能云AI基础架构分为底层(AI基础设施)、中层(AI开发双平台:零门槛AI开发平台EasyDL和全功能AI开发平台BML)和上层(面向行业的解决方案),形成全栈AI产品架构,可以满足任何企业任意场景下的AI定制需求。
文章插图
“全栈”意味着“大而全”,对企业AI开发来说意味着复杂度高,因此百度智能云将AI能力集成到“AI中台”,通过AI能力引擎与AI开发平台,给企业提供数据管理、服务管理、全线资源运维管理体系,实现集约化AI能力管理、统筹式的智能化升级。
文章插图
简单地说:百度智能云拥有全栈AI能力,企业可按需使用与拼装自己的AI开发平台,通过“AI中台”,企业AI模型定制、管理和运维的复杂度被大幅降低。
国家电网不同子公司、业务部门都要定制各种AI应用,其基于百度AI中台定制了国网人工智能中台,集成基础AI能力、自动化和 可视化工具,沉淀了一些共性的模型服务,支持上层复杂AI应用。有了人工智能中台,国网的模型开发人员、应用开发人员、业务应用人员均可轻松使用基础AI能力、开发工具和各种接口服务开发AI应用。
文章插图
基于AI中台、使用全栈AI能力的开发模式,可满足所有企业的定制化AI开发需求。
其次,企业AI开发对效能越来越敏感。
随着AI在更多场景深度应用,AI要处理的数据越来越多、模型越来越大、定制越来越深,因此算力需求越来越高:计算量越来越大、精度要求越来越高、处理时效要求越来越高。结果就是算力成本越来越高。
与此同时,AI开发涉及到数据收集、数据预处理、数据标注、模型训练、模型评估和模型部署等系列任务,流程长、复杂度高、工序多,每一步都可能成为效能瓶颈,都可能增加AI开发的成本。
文章插图
在成本可控的前提下实现效能最大化,是AI开发要着重考虑的问题,成本包括算力成本与开发成本,效能则包括数据质量、模型精度、处理效果、结果精准度等。因此,《“云智一体”白皮书》认为,适应未来的AI开发平台要具有如下三个能力:
- 在算力资源方面,要对接和管理好性能、高利用率、高性价比的AI算力资源;
- 在研发效率方面,要提供全流程的优化和开发效率的调优;
- 针对企业的实际业务场景和定制需求,提供整体的解决方案。
文章插图
百度智能云“云智一体AI开发全栈模式”,正好可以满足以上需求。百度既有AI技术优势,也有云原生能力,从基础硬件、存储、容器、开发平台到上层AI模型和应用的每个环节均融入 “云智一体”理念,具有低成本高效率的优势。
比如“百度AI开发基础设施”即AI定义的云,百度智能云在业内率先提出的AI原生云计算架构,搭建AI计算集群、AI 芯片等基础设施,对服务器等基础设施针对AI加速、AI优化、AI存储、AI容器等进行专门调优,具有更高性能(训练速度、精确度、模型效果)、更高利用率,更低成本。
- 腾讯音乐|市值超410亿港元,网易云音乐到底值不值?
- C++|嵌入式开发:C++中的结构与类
- 苹果|苹果资源机(BS机、富士康机)到底能不能入手?真是性价比首选?
- 开发者|开发者使用外链支付仍将被苹果抽成
- 双十一|联想和华为的差距到底在哪里?为什么联想的存在感这么弱!
- 红米手机|红米K40到底好不好用?9个月的使用体验告诉你答案
- 支付宝|央行公布新规!微信、支付宝个人付款码被禁用,到底影响了谁?
- oppo reno|Web前端培训:React.js与前端开发
- 叮咚|从商品采购到商品开发,叮咚买菜打造生态型供应链体系
- 电信运营商|民航局:鼓励航司、电信运营商和互联网企业开发空中网络服务