我们和计算生物学从业者深度聊了聊|对撞派 · 圆桌实录( 五 )


那还有一个挑战是什么呢?在做计算免疫学的时候,其实每个人内在的免疫环境都是千差万别的。我们做一个AI模型,如果想在每个人身上都适用,取得很好的效果,也是很大的一个挑战。这也就是为什么我们要对每个人有一个更个性化的建模过程和解决方案。
还有动态变化的问题。
生命科学很特别的一点,就是它的研究对象是活的。比如说,人体每天应对着我们所在的环境,包括各种病源的侵扰,我们是不断地在进化、在变化中去抵抗它们的。所以当我们使用传统的机器学习或人工智能的手段去做了分析建模,很可能这个模型未来要使用的对象已经发生了变化。
所以当我们用人工智能的手段去解决这些生物问题的时候,怎么能够做更好的泛化外推,能够去解决和应对生物体本身的变化,这是一个非常有趣的问题,它不仅仅是对计算生物学有意义,对人工智能、对机器学习都是一个新的挑战。
Q6:那我们是如何看待AI for Science这种形式的?
A6:当我们用人工智能跟自然科学进行交叉的时候,其实有两个视角。
一个是我们已经知道了自然科学的规律,也产生了很多的数据,我们怎么用人工智能从里面学到某种模型去加速这个过程。
另一分支就是当我们能够有那么多的观测数据,这些数据可能是科学家们用肉眼分析不过来的。如果我们有很好的人工智能技术,我们能不能去通过大量的高通量数据分析,总结出一些现有的科学家还没有发现的科学规律,这个科学发现的价值可能比加速的价值更高。
Q7:在AI for Science,这个具体的融合过程中,有没有什么经验和大家分享?
A7:人工智能带来了科学研究范式的转型。因为从计算机科学的视角看,现在很多的问题求解不再单纯依赖于人工的算法设计,而更多的是转成以数据驱动的模型构建。
此外,从基础科学研究的视角去看,传统基础科学研究更多是一种提出科学假设,然后验证科学假设的研究范式。随着大数据和人工智能的发展、普及和成熟,我们观察到越来越多的科学研究从假设推动的范式,走向了利用大数据和计算机技术挖掘科学洞见的这种数据驱动的科学研究范式。
从生物科学的角度出发,我们之前更多是基于专业领域知识(domain knowledge)的触发来做研究。通俗来讲,AI其实只是作为一种计算手段扮演了配角的作用。更多是在有大量的生物学数据和生物领域知识的前提下,用一种非常简单的统计模型或者是机器学习来做简单的拟合。
但伴随着AI技术的发展和深化,AI在AI for Science里逐渐变成了主角。它并不是只去对生物数据做简单的拟合,而是从 AI 入手去认识科学问题,即为科学问题量身定制一套AI的算法与开发。
但从另一方面来说,传统计算生物学的研究,更多是为了提升性能,也就是追求更高的数字。现在的 AI for Science 并不是这样。以AI+药物设计研发为例,我们并不像之前一样只关注准确率,而更关注可解释性。比如说在药物虚拟筛选里,是潜在药物的哪些原子和我们的受体蛋白的哪一些残基、哪一些原子能发生相互作用,这个模型能否提供更好的解释性等等。
传统的自然科学领域有一个研究范式,就是科学家们受到实验数据的启发,然后大胆假说提出一套科学理论,再通过设计实验去进一步地验证这些理论或者推论。人工智能其实就是使传统科学家做研究的这种过程变得自动化、规模化、并行化。所以,如果我们说传统的自然科学的发展严重依赖于少数顶级科学家的智慧的话,在未来,有了人工智能技术的加持,我们相信有更多的科学工作者可以以更高的通量去做更了不起的研究。
错过了直播的小伙伴可以点击我们的直播回看视频,了解更多技术细节和问题详解~
第一期:西湖欧米—从蛋白质组学看计算生物学
计算生物学系列对谈01期-西湖欧米 x 量子位·对撞派_哔哩哔哩_bilibili
第二期:深势科技—分子模拟与计算生物学的交叉
计算生物学系列对谈02期-深势科技 x 量子位·对撞派_哔哩哔哩_bilibili
第三期:微软亚洲研究院—从AI从业者的角度看计算生物学和AI for Science
计算生物学系列对谈03期-微软亚洲研究院 x 量子位·对撞派_哔哩哔哩_bilibili
在计算生物学领域,智库后续还会推出深度报告与解读视频。如果您深耕于计算生物学相关领域,欢迎扫码添加分析师进行深度讨论与交流。
关于量子位智库:量子位旗下科技创新产业链接平台,致力于提供前沿科技和技术创新领域产学研体系化研究(如前沿AI&计算机,生命科学,量子技术及新型半导体等)。通过媒体,社群和线下活动,基于专题技术报道及报告、专项交流会等形式,帮助决策者更早掌握创新风向。