算法|焦李成院士:进化优化与深度学习的思考


算法|焦李成院士:进化优化与深度学习的思考
文章插图

作者丨焦李成
整理丨维克多?
编辑丨青暮
2021年12月17日,西安电子科技大学人工智能学院教授、欧洲科学院外籍院士、IEEE Fellow焦李成受邀参加2021中国计算机大会“下一代演化计算发展趋势”论坛,并做了“进化优化与深度学习的思考”的主旨报告。
在报告中焦李成梳理了“进化”相关的发展渊源与思想起源,指出了当前人工智能的学术缺陷与实际困境,并从类脑的角度给出了解决路径:
“神经网络不应该是目前的意义上进行权重调参,它的结构应该具备变化性、可塑性、学习性和动态性;在类脑感知的过程中,脑的奖惩、学习、信息表征机制,以及突触的学习记忆、再生长和发育的机制对于信息的重建及编码和处理具有重要的作用。上述特性是现有深度网络所没有重视的。”
以下是报告全文,AI科技评论做了有删改的整理:
今天的演讲主要分为五个部分:发展渊源与思想起源、进化优化与学习、类脑表征学习与优化、进化优化与深度表征学习,以及思考与挑战。
人工智能几十年来得到了长足的发展,而进化优化和类脑启发的深度学习是现在人工智能技术的核心,其关键是:用脑处理知识和自然演化思想发展人工智能技术。这两个思想的发展可以通过历年颁发的科学奖项窥得一二。

算法|焦李成院士:进化优化与深度学习的思考
文章插图

例如通过梳理脑科学诺贝尔奖可以明晰“人类如何思考”,回顾图灵奖可以讨论“机器如何进行学习和推理”,了解历年生物相关的诺贝尔奖,可以在“生物如何选择优化”方面给我们启示。那么这些工作对现在的人工智能技术发展有什么启示?
其实,目前学者用人工智能解决实际问题可以分为以下几个步骤:机器学习推导符号 =>深度学习=>深度强化学习(感知+决策)=>深度迁移学习(环境适应)=>深度元学习(自动学习)。对于这一步骤路径,徐宗本院士曾经有一段关于机器自动学习的描述:
“机器学习自动化:首先在数据层面上,数据样本需要实现自生成、自选择;其次在模型算法层面上,模型算法需要实现自构建、自设计;最后在环境任务层面上,环境任务要实现自适应、自转换。人工智能的发展轨迹应该是从人工走向自动化,再迈向自主智能。”
从这段话也可以看出,这几个步骤环环相扣,一层比一层有难度,那么我们应该如何更加有效的优化这条路径?

1

进化优化思想起源
进化优化的思想起源很早,达尔文提出的全局优化以及拉马克、班德温提出的局部学习奠基了如今进化算法的学术思想。在进化学习语境下,我们希望无组织机器通过进化、学习、反馈的路径找到通用的机器学习方法。
1948年,图灵在《智能机》报告中也指出从婴儿到成人,人类大脑皮层可以看做从无组织机器进化为通用机器。在这之后,进化优化发展出了四大基本分支:
  • 进化编程:1960年,L.J.Fogel提出将模拟进化作为一个学习过程以生成广泛的人工智能机器,其强调自然进化中群体级行为变化。
  • 算法|焦李成院士:进化优化与深度学习的思考】进化策略:1964年,德国柏林工业大学的两位学生 L.Rechenberg与H. Schwefel借鉴生物的变异和选择提出了进化策略。
  • 遗传算法:1975年,J.H.Holland借鉴了C.R.Darwin的生物进化论与G.J.Mendels的遗传定律提出了遗传算法。
  • 遗传编程:1980年,S.F.Smith提出了基于遗传自适应算法的学习系统,J.R.Koza撰写了《遗传编程:用自然选择让计算机编程》。
根据进化计算思想,科学家们又设计了它的动力学过程:群体智能,它可以由混沌状态出发,通过价值启发信息探索规律、模式和知识,最终得到解。它的过程是通过动力学的演化过程,以概率1收敛到全局最优解,特点表现为随机、非线性、遍历、自组织性、适应性、多样性、稳定性和高度并行性。

算法|焦李成院士:进化优化与深度学习的思考
文章插图

如上图所示,群体智能的思想起源很早,其代表性的方法包括蚁群优化、粒子群优化、免疫算法、萤火虫算法等等。利用进化优化求解复杂问题,主要是利用它的并行性、奇异性、易修改性、高度的非线性以及广泛的应用性等特点,从而匹配NP难问题和组合爆炸问题。