标准化|云天励飞王孝宇:AI 研发和应用,数据的重要性远高于模型( 四 )


这样做的另一个好处是,不会因为人才流失导致既有的模型失效。
所有公司都会面临人员流动这个问题,一位优秀员工离职之后,其模型很难复现,因为别人不知道这个模型怎样迭代才达到现有的精度,上下衔接很困难,费时费力。
但是在这个平台上,就不会出现问题。模型训练过程中所做的所有数据的标注、操作,全部都在这个平台上,主要进行相关操作,全部流程都可以重复,不需要重新做。
在座如果有做研发管理的,肯定会感觉这个东西用起来非常不错。
现在,云天励飞内部的研发,除了一些非常高难度的,或者非要人工介入的算法研发(如人脸),其他的算法研发全部依赖于大规模算法开发平台。也就是说基本全部不需要算法工程师去做,都是标注人员在做。
以大堂搬运货物检测案例为例,每个工程师大概开发成本50万,一个月的时间差不多5万块钱的投入,但现在只需要1个标注人员,5-7天就可以做完从0到实用部署。
为什么能力稍微差一点,时间反而缩短了?
这就是流程化,所有模型的训练只在一个平台上完成。以前的方式,来来回回对接的成本太高,但在这个平台上,点击挖掘,自动寻找,再点标注,寻找标注人物,后台人员标注好,再点训练,全部就完成了,整个流程即使和非常有算法经验的工程师相比,这个平台也有4倍以上的提升。
我们凭借这个平台在深圳做了几个项目,像龙华智能运算能力平台。
这里面涉及的算法有上百个,公司不可能在短期内招聘几百个算法人员进行研发,因为这套平台当时还没有做得完备,所以让2个算法人员、10个标注人员,在6个月的时间把20多个算法开发全部完成了,成本也降低了很多。
为什么它需要这么多的算法?
这其实是整个城市管理思路的转变:以前是巡视型管理,需要实地巡查,才能发现、处理;现在布置相关摄像头,就能在后台发现,从而解决。
这种管理思路的转变,需要大量算法技术能力的支撑。云天励飞在龙岗算法仓做了一个项目,也是算法训练与赋能平台,这里面也有上百种算法的需求。
需要强调的是,这套研发平台没有牺牲模型的精度,不同的人群训练这套模型没有太大差别,因为在这个平台里,可以通过主动学习算法,基于数据集做快速迭代,从而得到比较高的检测精度。
最后提一点,云天励飞为什么要建立这套平台?
从行业看,视觉AI还处在拓荒阶段,仍然是一片沙漠,没有变成一片绿洲,只有等到它变成绿洲的时候,才能长出一颗颗参天大树,长出许多AI企业。
城市治理对于算法的需求是成千上万的,每个算法都靠有经验的人员去开发,成本会非常高昂,因此云天励飞开发了这套系统,缩减成本的同时,加快AI应用的进程。
可以设想,未来的城市,有一张网络可以检测方方面面,所有的事件都可以在城市大脑里解决。
这背后的技术逻辑是,算法可以做智能调度。比如对着大海的摄像头,不用把汽车检测的算法集成到摄像头上,当城市拥有一万种算法时,可以在不同场景下,调度合适的算法,来解决问题。
云天励飞的愿景是,通过知识图谱和整个平台的研发,让城市超脑实现自我进化,从而达到更高的智能化水平。
标准化|云天励飞王孝宇:AI 研发和应用,数据的重要性远高于模型】值得一提的是,云天励飞的自进化城市智能体的思路,已经被写入深圳市政府工作报告中。雷峰网雷峰网