函数零点的个数 函数的零点的个数

函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)
(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2 -3x +2有f(0)·f(3)>0,但函数f(x)在区间(0,3)上有两个零点.
(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点.
函数零点个数的判断方法:
(1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点.
【函数零点的个数 函数的零点的个数】特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点
②函数的零点是实数而不是数轴上的点.
(2)代数法:求方程f(x)=0的实数根.
典型例题

函数零点的个数 函数的零点的个数

文章插图


函数零点的个数 函数的零点的个数

文章插图

函数零点的个数 函数的零点的个数

文章插图

函数零点的个数 函数的零点的个数

文章插图

函数零点的个数 函数的零点的个数

文章插图

函数零点的个数 函数的零点的个数

文章插图