G代表0~9中哪一个数字?

小编来今天给同学们带来的趣味数学故事是:G代表0~9中哪一个数字? 。
每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才 。
故事适合年级:小学【G代表0~9中哪一个数字?】趣味小故事:G代表0~9中哪一个数字?

下列乘法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字: ABCDE
×F
______________
【G代表0~9中哪一个数字?】GGGGGG
G代表0~9中哪一个数字?
(提示:G×111111可能有哪些因数?G是不是F的倍数?代表哪个数字?)
答 案
F×ABCDE=GGGGGG 。
F×ABCDE=G×111111 。
在从2到9的整数中,只有3和7能整除111111 。
F×ABCDE=G×3×7×5291 。
如果G是F的一个倍数,则ABCDE将是一个各位数字全部相同的六位数 。因此G不是F的倍数 。
于是:
(a)F不会等于0,否则C也将等于0,从而成为F的倍数 。
(b)F不会等于1,否则G就成为F的倍数 。
(C)F不会等于2,否则G就会成为2的倍数(因为2要整除G×llllll),从而成为F的倍数 。
(d)F不会等于4,否则G就会成为4的倍数(因为4要整除G×llllll),从而成为F的倍数 。
(e)F不会等于8,否则G也将等于8(因为8要整除G×1lllll),从而成为F的倍数 。
(f)F不会等于5,否则G也将等于5(因为5要整除G×llllll}从而成为F的倍数 。
(g)如果F=3,则ABCDE=G×7×5291=G×37037 。37037中有个0,这说明任何一位数乘以这个数将使积ABCDE的各位数字中出现重复 。因此F不会等于3 。
(h)如果F=6,则ABCDE×2=G×7×5291=G×37037 。于是G一定是2的倍数 。令G/2=M,则ABCDE=M×27037 。根据(g)中的推理,F不会等于6 。
(i)如果F=9.则ABCDE×3=G×7×5291=G×37037 。于是G一定是3的倍数 。令G/3=M则ABCDE=M×37037 。根据(g)中的推理,F不会等于9 。
(j)因此F=7 。于是,ABCDE=G×3×5291=G×15873 。由于题目中那个乘法算式所包含的七个数字各不相同,因此G不会等于1、5或7 。由于ABCDE只是个五位数,所以G不会等于8或9 。既然F不等于0,那G也不等于O 。因此G只可能等于2、 3、4或6 。

相应的四种情况是:
F=7,G=2,ABCDE=31746;
F=7,G=3,ABCDE=47619;
F=7,G=4,ABCDE=63492;
F=7,G=6,ABCDE=95238 。
其中只有最后一种可使那个乘法算式中的七个数字各不相同 。于是,可得那个乘法算式如下: