数学故事:彻底解决“四色问题”

数学故事:彻底解决“四色问题”,今天就让小编来给同学们带来这个数学故事:彻底解决“四色问题”
每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才 。
故事适合年级:小学二年级【数学故事:彻底解决“四色问题”】趣味小故事:,地图“四色问题”(又称“四色猜想”)最早由英国大学生法兰西斯?古特里(Francis Guthrie)于1852年在绘制地图时发现,他却找不出科学肯定的证明就去请教他在伦敦大学读书的哥哥费特里克?古特里(Frederick Guthrie) 。兄弟俩搞了好些日子还是证明不了,就由哥哥去向伦敦大学的老师、当时非常著名的数学家奥古斯都?德?摩根(Augustus de morgan)请教,摩根教授当时也证明不了,就至函他在三一学院的好友?D?D著名数学家威廉?哈密尔顿(William Rowan Hamilton),希望他能帮助证明 。可哈密尔顿对这个问题研究了十三年,到死也没能给出证明 。自从1879年至今全世界不断有人提出证明了“四色问题”,可是都叫人难以信服,不断又被别人否定,至今这个“四色问题”仍与“哥德巴赫猜想”及“费马最后定律”一起被全世界公认为数学史上最著名的三大难题 。
本人2004年夏天刚接触到“拓扑学”,试着用“拓扑学”的方法去分析“四色问题”,只化半小时左右时间就证明了“四色问题” 。我写的《关于“四色问题”的证明》(以下简称《证明》,可在电脑中文搜索栏打入“四色问题”或作者姓名“焦永溢”查看)2004年底在许多数学网站上刊登出来后,看了的人很多认为非常正确;但也有一部分不明白的人认为证明了“相互间有连线的点不多于四个”并不是证明了“四色问题”,他们认为四点相互间有连线只是平面图上的局部现象,不能代表整个平面图,还提出比如中间一个点周围五个点的图形并没有四个点之间相互有连线却也要四种颜色 。可我在这里要再强调一下:《证明》中三个定理概括讲就是“三点必闭,四点必围,五点必断”,并没有说一定要四点相互间有连线才需四色,证明“四色问题”关键在于“五色必断” 。《证明》中分析了第五点E落在封闭图形ABC以内及以外的情况,也提到了第五点若落在连线上必定会隔断这条连线,只是没有把隔断的情况用图画出来,其实一画出来也是与另两种情况一样:三点包围一点,另一点又被小的封闭图形所包围 。下面我再从第五点开始,接着第六点、第七点、第八点……直到无穷多点的情况下证明 “四色永远足够” 。
<< < 1 2 > >>更多小学趣味数学故事,可以微信搜索qwshuxue或者中小学趣味数学,获得更多趣味数学故事的文章 。
阿尔法趣味数学小课堂:数学小故事【数学故事:彻底解决“四色问题”】喜欢更多数学小故事,可以给小编留言,小编会在第一时间给大家带来喜欢有趣的数学故事 。

版权申明:部分图片来源网络,转载请注明【(www.allfloor.org)】 。