一场数学竞赛:2017美国总统大选之争
小编来今天给同学们带来的趣味数学故事是:一场数学竞赛:2017美国总统大选之争 。
每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才 。
故事适合年级:小学【一场数学竞赛:2017美国总统大选之争】趣味小故事: 导读:美国大选刚结束,结果大家都知道吧?这求学网数学网小编末宝就不多说了 。对于这个世纪之争,外人看热闹,内行看门道,那么,作为孩纸的我们看什么呢?
大人可能更多的是会关注谈话内容或者选举结果,但是有那么一些小孩会关注美国总统是怎么选出来的?如果你遇到了孩子对这个问题好奇,你可以这么和小孩解释 ...其实里面有很多很重要的数学问题 。
文章插图
【一场数学竞赛:2017美国总统大选之争】 美国总统大选如同一场数学竞赛
美国总统选举过程漫长而复杂,由于美国采取的不是一人一票的直接民主,而是有复杂计算的间接民主,初选时每个州都有自己的投票规则,党代表票的计算方式也相当错综复杂 。因此,美国总统大选可以说更像一场数学竞赛 。
在“奇葩”的大选初选阶段,美国50个州,每个州都有自己的规则,有的州是安静排队投票(Primary),有的州则是像辩论大会那样的党团会议(Caucus) 。投票后,每个州的计票方式也不一样,搞到后来甚至投硬币也能决定!
由于美国实行间接民主,因此老百姓的票其实是间接地投给了党代表们,而不是直接投给总统参选人,这计算就更复杂了,每一个州都不太一样 。以今年4月怀俄明州的民主党初选为例,当地人民的投票结果显示桑德斯狂胜希拉里12个百分点,但最后,输掉的希拉里却拿到跟桑德斯一样多的党代表票,计算方式实在是错综复杂,说多了都是泪……
选举结果是对选民意见的反映吗?
每到大选,美国社会各界就全体总动员 。政治家当然是到处拉选票,各大媒体更是评论加民意调查加八卦候选人,各种招数都使出来吸引眼球 。连不食人间烟火的数学家也不例外 。
2008年初的美国数学年会就有一个关于选举中的数学问题的报告,临近大选的那一期数学会刊又有一篇相关文章 。文章中的一些例子很容易对大众讲清楚,我这里就把它们整理出来与大家分享 。
主要结论是:在竞选者实力接近的时候(各方支持者数量差不多),选举结果只是对选举规则的反映,而不一定是对选民意见的反映 。
什么叫对选举规则的反映?这结论听起来怎么有点违背常理 。要说清楚这个问题,我们先来看一个例子 。
假设有三个候选人A,B,C 。11个人来投票,每个投票人列出他们对这三个人的支持程度,也就是给这三个人排一个从支持到不支持的序 。结果如下:
文章插图
如果选举规则是每人只选一个人,根据上面列出的表我们可以看出A会赢 。只选一个人的结果是A>C>B(得票依次是5,4,2) 。如果选举规则是每人可以选两人,然后再从前两名中挑出得票最多的(相当于初选加复选),我们可以看到其结果是B>C>A(得票依次是9,8,5) 。这个例子说明,同样的选民,同样的意向,因为选举规则的不同可以得出完全相反的结论 。还有一些地方(比如欧洲一些地方的选举)对意向采用Borda加权(起始于1770年) 。
对每个意向表,第一名得两分,第二名得一分 。最后把每个人的得分加起来看谁的分多谁当选 。如果对上面的意向表采用这个Borda加权,我们得出另一个不同的结果C>B>A(依次得分是12,11,10) 。如果用另外的加权方法,我们还可以得出别的不同结果 。
同样的意向表,不同的加权,到底会产生多少个不同的结果?有定理说:
对N个候选人,存在一个意向表使得不同的加权会产生(N-1)*(N-1)!个不同的结果 。
显然,对加权的限制是前面的权要大于等于后面的权 。另外还要求最后一名的权是0 。在这种条件下,如果有10个候选人(比如美国的总统初选),同样的意向表可以产生超过三百万种不同的结果 。
有人说数学上证明的存在例子都是人为造出来的特殊情况,实际选举出现这种特例的机会是不多的 。对这些怀疑者正好有另一个定理等在那里回答 。该定理说:
文章插图
如果有三个候选人,他们的支持度差不多(没有人有特别大的优势),则有大于三分之二的可能性(实际数是69%)选举规则会改变选举结果 。
- 六年级数学周记
- 数学符号大全:英文表达你知道吗?
- 数学与生活:成都9岁学生纠错奥赛名题
- 苹果的故事数学趣味故事
- 官学高斯的学数学的故事
- 小学数学教育故事《数学教学》
- 小学数学故事篇《关于统计》
- 小学数学故事篇《动物会认识数字吗?》有趣的数学故事
- 一年级趣味数学游戏题:0和它的数字兄弟
- 一年级趣味数学游戏题:如何送报纸