1、高等数学的一个概念 。若向量空间的基是正交向量组,则称其为向量空间的正交基,若正交向量组的每个向量都是单位向量,则称其为向量空间的标准正交基 。
2、在线性代数中,一个内积空间的正交基是元素两两正交的基 。称基中的元素为基向量 。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基 。
3、无论在有限维还是无限维空间中,正交基的概念都是很重要的 。在无限维希尔伯特空间中,正交基不再是哈默尔基,也即是说不是每个元素都可以写成有限个基中元素的线性组合 。因此在无限维空间中,正交基应该被更严格地定义为由线性无关而且两两正交的元素组成、张成的空间是原空间的一个稠密子空间的集合 。
什么是正交基底?正:垂直;交:相交 。基底:可用表示其他向量的一组非零向量 。基底的夹角非90度的,如斜二侧画法中的夹角45度 。基底夹角90的称正交 。当x向、y向基底的模均为单位一时,即为笛卡尔坐标糸 。
高二数学空间向量的公式及定理 科学是人类的共同财富,而真正科学家的任务就是丰富这个全人类都能受益的知识宝库 。下面是我为大家整理的高二数学空间向量的公式及定理,希望大家喜欢 。
空间向量
一、空间向量知识点
1.空间向量的概念:
定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量 。
具有大小和方向的量叫做向量注:
⑴空间的一个平移就是一个向量
⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量
⑶空间的两个向量可用同一平面内的两条有向线段来表示
ⅰ定理:如果三个向量 不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。且把 叫做空间的一个基底,都叫基向量 。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底 。
ⅲ 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用 表示 。
ⅳ 空间四点共面:设O、A、B、C是不共面的四点,则对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
2.空间向量的运算
二、复习点睛:
1、立体几何初步是侧重于定性研究,而空间向量则侧重于定量研究 。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具 。
2、根据空间向量的基本定理,出现了用基向量解决立体几何问题的向量法,建立空间直角坐标系,形成了用空间坐标研究空间图形的坐标法,它们的解答通常遵循“三步”:一化向量问题,二进行向量运算,三回到图形问题 。其实质是数形结合思想与等价转化思想的运用 。
3、实数的运算与向量的运算既有联系又有区别,向量的数量积满足交换律和分配律,但不满足结合律,因此在进行数量积相关运算的过程中不可以随意组合 。值得一提的是:完全平方公式和平方差公式仍然适用,数量积的运算在许多方面和多项式的运算如出一辙,尤其去括号就显得更为突出,下面两个公式较为常用,请务必记住并学会应用:。
2、空间向量的坐标表示:
(1)空间直角坐标系:
①空间直角坐标系O-xyz,在空间选定一点O和一个单位正交基底,以点O为原点,分别以 的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,点O叫做原点,向量 叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面 。
②右手直角坐标系:右手握住z轴,当右手的四指从正向x轴以90°角度转向正向y轴时,大拇指的指向就是z轴的正向
③构成元素:点(原点)、线(x、y、z轴)、面(xOy平面,yOz平面,zOx平面)
④空间直角坐标系的画法:作空间直角坐标系O-xyz时,一般使∠xOy=135°(或45°), ∠yOz=90°,z轴垂直于y轴,z轴、y轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的一半
(2)空间向量的坐标表示:
①已知空间直角坐标系和向量,且设 为坐标向量(如图),
由空间向量基本定理知,存在唯一的有序实数组 叫做向量在此直角坐标系中的坐标,记作。
②在空间直角坐标系O-xyz中,对于空间任一点A,对应一个向量,若,则有序数组(x,y,z)叫做点在此空间直角坐标系中的'坐标,记为A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标,写点的坐标时,三个坐标间的顺序不能变 。