光合作用的实质

光合作用的实质是在物质上将无机物转换成有机物;在能量上将活跃的化学能转化为稳定的化学能 。简单地说,光合作用的实质就是一种能量转换,指绿色植物吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程 。这个过程中光能和热能的作用就是促使反应发生,也就是提供这些反应的所需能量,和提供给植物足够的动力来泵取土壤中和空气中的所需物质 。
光合作用主要包括光反应、暗反应两个阶段 。光反应阶段的特征是,在光的驱动下水分子氧化释放电子,通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给电子受体NADP,使它还原为NADPH 。
暗反应阶段是利用光反应生成的NADPH和ATP进行碳的同化作用,使二氧化碳还原为糖 。由于这个阶段不直接依赖于光,只是依赖于光反应的产物,把它们当反应物,故称为暗反应阶段 。
光合作用的原理:叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气 。光合作用的应用:农作物扣大棚提高温度,增强光合作用增强昼夜温差使作物糖分积累,如吐鲁番的葡萄 。
光合作用的实质是什么? 光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化) 。

光合作用反应式分别是什么总反应式:CO2+H2O( 光照、酶、 叶绿体)==(CH2O)+O2 (CH2O)表示糖类
有关化学方程式
光反应:
物质变化:H2O→2H+ 1/2O2(水的光解)
NADP+ + 2e- + H+ → NADPH
能量变化:ADP+Pi+光能→ATP
暗反应:
物质变化:CO2+C5化合物→2C3化合物(二氧化碳的固定)
2C3化合物+4NADPH+ATP→(CH2O)+ C5化合物+H2O(有机物的生成或称为C3的还原)
能量变化:ATP→ADP+PI(耗能)
能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)
光反应与暗反应
①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中.
②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶.
③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原.
④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能.
⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料.
光合作用光反应和暗反应阶段光反应
光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH 。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP 。
反应式:H2O+ADP+Pi+NADP^+→O2+ATP+NADPH+H^+
【光合作用的实质】暗反应
暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖 。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和NADPH的提供,故称为暗反应阶段 。
反应式:CO2+ATP+NADPH+H^+→(CH2O)+ADP+Pi+NADP^+
总反应:CO2+H2O→(CH2O)+O2
其中(CH2O)表示糖类 。
光合作用的实质1、光合作用的实质:物质上,将无机物转换成有机物能量上,将活跃的化学能转化为稳定的化学能光合作用的原理叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气 。
2、光合作用的应用:农作物扣大棚,提高温度,增强光合作用,增强昼夜温差使作物糖分积累,如吐鲁番的葡萄 。
1、光合作用的实质:物质上,将无机物转换成有机物能量上,将活跃的化学能转化为稳定的化学能光合作用的原理叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气 。
2、光合作用的应用:农作物扣大棚,提高温度,增强光合作用,增强昼夜温差使作物糖分积累,如吐鲁番的葡萄 。
光合作用的实质是光合作用的实质是:物质上,将无机物转换成有机物;能量上,将活跃的化学能转化为稳定的化学能 。
光合作用(Photosynthesis)是绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程,反应条件包括光色素分子酶、二氧化碳(或硫化氢) 。