什么是非线性光学晶体?它的基本结构特征是什么?( 二 )


4. 晶体的共性
由于具有周期性的空间点阵结构, 晶体具有下列共同性质: 均一性, 即晶体不同部位的宏观性质相同; 各向异性, 即晶体在不同方向上具有不同的物理性质; 自限性, 即晶体能自发地形成规则的几何外形; 对称性, 即晶体在某些特定方向上的物理化学性质完全相同;具有固定熔点;内能最小 。
5. 晶体学
除了对晶体的结构、生长和一般性质的研究, 人们还探索了有关晶体的其它问题, 从而形成了晶体学这门学科 。其主要研究内容包括5 个部分: 晶体生长、晶体的几何结构、晶体结构分析、晶体化学及晶体物理 。其中, 晶体生长是研究人工培育晶体的方法和规律, 是晶体学研究的重要基础; 晶体的几何结构是研究晶体外形的几何理论及内部质点的排列规律, 属于晶体学研究的经典理论部分, 但是, 近年来5 次等旋转对称性的发现, 对这一经典理论提出了挑战; 晶体结构分析是收集大量与晶体结构有关的衍射数据、探明具体晶体结构及X射线结构分析方法的; 晶体化学主要研究化学成分与晶体结构及性质之间的关系; 晶体物理则是研究晶体的物理性质, 如光学性质、电学性质、磁学性质、力学性质、声学性质和热学性质等 。
二、晶体的性能、应用及进展
一位物理学家说过: “晶体是晶体生长工作者送给物理学家的最好的礼物 。”这是因为,当物质以晶体状态存在时, 它将表现出其它物质状态所没有的优异的物理性能, 因而是人类研究固态物质的结构和性能的重要基础 。此外, 由于能够实现电、磁、光、声和力的相互作用和转换, 晶体还是电子器件、半导体器件、固体激光器件及各种光学仪器等工业的重要材料, 被广泛地应用于通信、摄影、宇航、医学、地质学、气象学、建筑学、军事技术等领域 。
按功能来分,晶体有20 种之多,如半导体晶体、磁光晶体、激光晶体、电光晶体、声光晶体、非线性
光学晶体、压电晶体、热释电晶体、铁电晶体、闪烁晶体、绝缘晶体、敏感晶体、光色晶体、超导晶体以及多功能晶体等 。以下简单介绍其中重要的几种 。
1. 半导体晶体
半导体晶体是半导体工业的主要基础材料, 从应用的广泛性和重要性来看, 它在晶体中占有头等重要的地位 。半导体晶体是从20 世纪50 年代开始发展起来的 。第一代半导体晶体是锗( Ge) 单晶和硅单晶
(Si)。由它们制成的各种二极管、三极管、场效应管、可控硅及大功率管等器件, 在无线电子工业上有着 极其广泛的用途 。它们的发展使得集成电路从只包括十几个单元电路飞速发展到含有成千上万个元件的超大规模集成电路, 从而极大地促进了电子产品的微小型化, 大大提高了工作的可靠性, 同时又降低了成本, 进而促进了集成电路在空间研究、核武器、导弹、雷达、电子计算机、军事通信装备及民用等方面的广泛应用 。
目前, 除了向大直径、高纯度、高均匀度及无缺陷方向发展的硅单晶之外, 人们又研究了第二代半导体晶体——Ⅲ—Ⅴ族化合物, 如(CaAs) 、磷化镓( GaP) 等单晶 。近来, 为了满足对更高性能的需求,已发展到三元或多元化合物等半导体晶体 。在半导体晶体材料中, 特别值得一提的是氮化镓( GaN) 晶体 。由于它具有很宽的禁带宽度(室温下为3. 4eV) , 因而是蓝绿光发光二级管(LED) 、激光二极管(LD) 及高功率集成电路的理想材料,近年来在全世界范围内掀起了研究热潮, 成为炙手可热的研究焦点 。目前, 中国科学院物理研究所在该晶体的生长方面独辟蹊径, 首次利用熔盐法生长出3mm×4mm的片状晶体。一旦该晶体的质量得到进一步的提高, 它将在发光器件、光通讯系统、CD 机、全色打印、高分辨率激光打印、大屏幕全色显示系统、超薄电视等方面得到广泛的应用 。
2. 激光晶体
激光晶体是激光的工作物质, 经泵浦之后能发出激光, 所以叫做激光晶体 。1960 年, 美国科学家Maiman 以红宝石晶体作为工作物质, 成功地研制出世界上第一台激光器, 取得了举世瞩目的重大科学
成就 。目前,人们已研制出数百种激光晶体 。其中,最常用的有红宝石(Cr :Al 2O3) 、钛宝石( Ti :Al2O3) 、掺钕钆铝石榴石(Nd : Y3Al 5O12) 、掺镝氟化钙(Dy : CaF2) 、掺钕钒酸钇(Nd : YVO4) 、四硼酸铝钕(NdAl 3(BO3) 4) 等晶体 。
近年来, 由于新的激光晶体的不断出现以及非线性倍频、差频、参量振荡等技术的发展, 利用激光
晶体得到的激光已涉及紫外、可见光到红外谱区,并被成功地应用于军事技术、宇宙探索、医学、化学
等众多领域 。例如,在各种材料的加工上,晶体产生的激光大显身手, 特别是对于超硬材料的加工, 它具有无可比拟的优越性 。比如, 同样是在金刚石上打一个孔, 用传统方法需要两小时以上的时间, 而用晶体产生的激光,连0. 1 秒的时间都不用 。此外,用激光进行焊接, 可以高密度地把很多电子元件组装在一起, 并能够大大提高电路的工作可靠性, 从而大幅度地减小电子设备的体积 。激光晶体还可以制成激光测距仪和激光高度计, 进行高精度的测量 。令人兴奋的是, 法国天文台利用具有红宝石晶体的装置, 首次实现了对同一颗人造卫星的跟踪观察实验,精确地测定了这颗卫星到地面的距离 。在医学上,激光晶体更是得到了巧妙的应用 。它发出的激光通过可以自由弯曲的光导管进行传送, 在出口端装有透镜和外科医生用的手柄 。经过透镜, 激光被聚焦成直径仅有几埃的微小斑点, 变成一把无形却又十分灵巧的手术刀, 不但能够彻底