避免这7个数据错误,让你的数据分析更有效率!
数据正在成为现代企业的一个更重要的工具,几乎可以作为一种货币,它可以从衡量营销活动的有效性到评估员工绩效等方面促进一切。 但许多企业家认为数据本身就是有价值的。企业拥有的数据越多越好,如果有的话,企业会做出更好的决定,此时数据分析师就担任的重要角色。
事实上,收集数据只是开展业务过程的第一步,单凭数据就无法对企业业务进行全面准确的描述。
如果企业想要获得成功的话,也需要能够有效地收集、组织、解释、展示这些数据,而大多数人都犯了阻止他们这样做的严重错误。
最常见的错误
在数据分析中一定避免这些严重的错误:
1.没有收集足够的数据。
采用“越多数据越好”的理念来运行业务是一个糟糕的主意,因为它没有将数量与优先级相区分。但是,在开始信任这种结论之前,企业需要最少量的数据。例如,如果企业有1000个客户,则无法选择其中的2个进行访问,因此企业需要一个更大、更具代表性的样本量。
2.收集错误的数据类型。
企业也可能收集错误的数据类型。如果企业经营的是一家汽车维修店,却了解目标人群的饮食习惯,那么这些信息对其不会有帮助。当然,这是一个令人震惊的例子,但原理是一样的。企业需要收集数据点,以便你得出结论并采取行动,而不是为了收集数据而收集数据。
3.使用错误的仪表板。
企业的仪表板对其结果的影响比人们想象的要大。这些工具负责将企业的所有数据收集在一个地方,为其提供强化数据和生成报告,并为多个团队成员提供访问权限。有这么多的选项可供选择,很难说哪一个是企业业务的正确选择,但是如果企业想要获得最好的工具,则需要通读所有这些选项。否则,企业可能会花费过多的时间来培训新员工,或者生成没有强调关键变量的乏味报告。
4.容许偏见扭曲自己的结论。
人的思想有很大的缺陷,因此在分析数据时相信自己的直觉通常是一个坏主意。人们很容易出现一系列的认知偏差,从确认偏差到生存偏差,甚至可能很快扭曲人们面前的客观信息。最好是学习这些认知偏差,并找出弥补方法,所以人们的结论不会混乱或扭曲。
5.比较苹果和橙子。
大多数新手试图在没有进行比较的时候达到目的,将一个选择的数据与另一个选择的数据相比较。这种“苹果对橙子”的比较可能会导致错误的结论,所以最好尽可能地比较自己的数据集。
6.未能隔离变量。
现代应用程序通常需要审查数十个甚至数百个不同的变量,尤其是在营销行业。当企业发现一个相关性,如内容长度和访问者之间的关系时,很容易得出因果关系,但是这是很危险的(有时候也是搞笑的)。相反,企业需要隔离正在使用的变量,以便可以证明或反驳因果关系,并了解更多关于数据点之间的关系。
7.提出错误的问题。
数据本身不会给企业任何结论。企业的图表和图形通常不会带来一个明显的突破。相反,企业需要提问您的数据,并使用所需的工具来发现答案。如果所问的是错误的问题,无论是误导性的还是不可行的,数据的性能如何,或者工具的直观程度如何,都无关紧要。
数据并不完美
数据是如此有价值以至于已经变得商品化,这是事实,但除非你知道如何有效地使用数据,否则它实际上是毫无价值的。企业的方法,组织方法,甚至是其解释总是会出现问题,但是企业对最佳实践的熟悉程度越高,就越有责任有效地利用其数据,企业就越有可能获得准确、有价值的结论。 不要认为自己的努力正在发挥作用,挑战他们,并不断调整自己的方法,发现隐藏的偏见,提出更好的问题,并从分析工作中获得更多的价值。
End.
作者:Harris编译
来源:机房360
往期回看
数据分析师入门的8个基本技巧
数据分析师必备的统计学知识,都在这里了
跳槽失败:数据分析师+211硕士+掌握工具+做过BI项目
- 四川17个地方入选\"城市双修\"试点,有你的家乡吗?
- 天盾windows数据恢复软件怎么使用
- 苹果手机抹掉所有数据和设置可以重新设置ID吗
- 哪种数据库比较好学?
- 为什么网络连接上了总是出现数据错误字样?
- 吃货们请放肆吃!18年的美食报告数据也靠你们了!
- 有7个不相同的自然数,其中至少有两个数的差是6的倍数。这是为
- 美中日糟糕的经济数据恐粉碎全球经济同步复苏的美梦
- 苹果数据线那么容易坏,只能再买新的?
- Excel动态图表能让数据动起来?还有这种操作!