点评|颜宁等点评:AI精准预测蛋白质结构,结构生物学何去何从?( 二 )


(中国人民大学数学科学研究院教授,清华大学北京结构生物学高精尖中心合作研究员)
2020年第14届国际蛋白质结构预测竞赛(CASP14)共有84个常规(Regular)题目,其中有14个题目因为生物实验没给出确定结构等原因被取消或延缓,其他70个题目的单体和复合物蛋白质所含有的氨基酸个数从73到2180不等。
19个国家的215个小组参加了CASP14。最终,谷歌旗下DeepMind公司的人工智能系统AlphaFold2在2018年的Alphafold基础上迭代创新,超常发挥,一枝独秀,基本解决了“从氨基酸序列预测蛋白质结构”这个困扰人类50年的生物学第二遗传密码问题。
AlphaFold2的成功表现在三个方面:
不少结构的预测精确度跟实验晶体结构相当,可以替代晶体结构;
一些含有多个结构域的复杂超长的单链结构也达到了可以跟实验结构比较的程度;
帮助解析了竞赛中涉及到的、实验多年没拿到的X射线晶体和cryo-EM冷冻电镜结构,比如T1058的膜蛋白是用了Alphafold2的预测模型之后,才跟原有晶体学数据综合成功解析了结构。
AlphaFold2团队的John Jumper报告表明,他们使用了基于注意机制的神经网络,动态调整网络中节点的顺序和链接;依靠的是端到端的优化整体构建结构,而不是氨基酸距离;网络中内置了大量的序列、结构和宏基因组等多重比较信息;还依赖分子模拟软件优化去掉了原子的堆积碰撞。
在AlphaFold2的摘要作者名单里,交叉团队的30位作者中有19位都被标记为相同贡献的第一作者。他们将近8分钟的宣介视频,记录了团队成员在新冠疫情期间精诚合作、攻坚克难的宝贵场景。
CASP组织者John Moult指出,计算下一步还有更困难的问题要解决:超大复合物结构、动态构象变化、蛋白质设计、药物设计等等。
除了我们蛋白质结构预测小同行对AlphaFold2的成功很欣喜之外,社会上还有多个不同方向的学术界、产业界和新闻界对它寄予了厚望。
在欣喜的同时,蛋白质结构预测小同行也有一些保留意见:
工程化明显,依赖于强大的GPU计算资源和代码优化团队;
谷歌公司几乎可以收集全球所有网络信息,虽然看起来AlphaFold2的自动化程度很高,但他们在人工操作中使用了哪些信息值得关注;
预测对了结构,但不等于明白了蛋白质折叠过程和原理。
生物实验科学家也有不少看法:
算出结构只是生物学规律发现的第一步;
点评|颜宁等点评:AI精准预测蛋白质结构,结构生物学何去何从?】计算的多个models中,有时打分排序不准;
开放AlphaFold2的server之后,使用效果不一定那么好;
只是在已有蛋白质结构数据集上训练得到的模型,尚不能计算其它构象或其它类别的分子结构。
还有关心这个领域的其他方向的专家也提出了问题:怎么理解这个算法成功的原理?怎么跟原有的热力学、物理学等基本原理相融相通?
我认为AlphaFold2是个大突破,后续可能性很多,会替代一些简单的结构生物学实验,但对当下科学家追求的前沿生物学来说,共赢大于竞争;对生物学、数学和计算机学等学科而言,则会带来新的机遇。
技术服务于科学探索,结构生物学早就进入新时代
颜宁
(美国普林斯顿大学雪莉·蒂尔曼终身讲席教授,美国科学院外籍院士)
首先,简单说一下,什么是生物学里的“结构”。用个不太恰当的类比:变形金刚。比如擎天柱是辆车还是个机器人,这就是不同的结构了,机器人能打架大车做运输,功能也不一样。而不同的汽车人组成成分可能差不多,都有合金、玻璃、橡胶,但是形态各异,特长也不一样。生物分子的组成成分和基本单元就那么几种,但是组装起来,不同的序列不同的结构,于是功能各异、五花八门。这个结构不是静止的,每一个生物大分子基本都像个小机器,比变形金刚更复杂、更变化多端。
因为结构决定了生物大分子的功能,所以解析高分辨率结构在过去几十年一直是理解生物大分子工作机理最有力的工具。但是一直以来,因为技术局限,对于绝大多数生物大分子的结构解析困难重重。所以,一批科学家另辟蹊径,试图在已有的知识基础上,绕开劳心劳力又劳财的实验步骤,从蛋白质的序列直接通过计算预测出它们精准的三维结构。
蛋白结构预测并不是一个新鲜学科,一直以来就是结构生物学的一个分支,很多科学家不断开发算法,希望根据序列预测出来的结构越来越准确。这个领域在过去十几年进步迅速,并且与实验结构生物学融合度越来越高。比如,自从进入电镜时代,看到一堆黑白灰的密度,如果其中某些部分没有同源结构,通过软件预测一个大致的结构模型,放到密度图里面做框架,再根据实验数据调整,已经是个常规操作。