出点|嗅觉AI:为减少食物浪费出点力( 二 )
由于气味本身具有非常高度混合性或者非结构化特征,往往很难直接对气体的分子结构进行还原或进行模拟分析,否则只能变成对某些单一气体进行分辨和识别。
这一次,新加坡南大团队发明的这种嗅觉AI系统则是对“气味”的数据化进行两个步骤的拆解,将气味的化学信号转变成图形颜色的识别信号,解决了气味本身的复杂度问题。
这个嗅觉AI系统被称为“电子鼻”(e-nose),保护两个部分:1、条形码:能够根据肉类腐烂时产生的气体而改变颜色;2、阅读器:一个经过深度卷积神经网络算法驱动的手机应用程序。电子鼻的“阅读器”可以根据大量的条形码颜色库当中识别和预测肉类的新鲜程度。
另外,为了使电子鼻便于携带,研究者将其整合到一个智能手机应用中,可以在30秒内得出结果。
文章插图
首先,电子鼻的条形码模拟了我们人类嗅觉的工作方式。当腐烂的肉类食物产生的气体和我们鼻子中的受体结合的时候,就会产生特定信号传送给大脑,大脑根据这些信号并给出相应的模式,使得我们能够判断这些肉类食物的腐烂的程度。
2004年诺贝尔生理学奖得主理查德阿克塞尔和琳达巴克曾经在嗅觉机理研究中发现,人类虽然只有1000种左右的嗅觉基因(细胞类型),但可以感受和辨识10000种以上的气味化学物质,这种辨别气味的复杂度可以逆天,当然还远远比不上狗狗的能力。
而在电子鼻的条形码中,有20个条码,条码是由一种装载了不同类型燃料的纤维素壳聚糖制成的,这些燃料会跟肉类释放的气体发生反应,并根据不同类型和浓度的气体而改变颜色,从而形成独特的颜色组合,相当于一种肉类状态的独特的“气味指纹”。
例如,条形码中的第一条含有一种呈弱酸性的黄色燃料,在跟肉类腐烂产生的胺化物接触时,就会从黄色变为蓝色,而且随着胺化物浓度的增加而加深颜色。
文章插图
那么,如何让“阅读器”能够识别这些“气味指纹”并能识别肉类的新鲜度呢?
第二步就是,研究者要先按照肉类新鲜度的国际标准制定一个分类系统,然后在真实环境下对不同时间的储存的肉类进行条形码的检测和图像拍摄,并按照新鲜度进行分类。然后用不同条码的图像训练相应的嗅觉算法,建立起“气味指纹”和不同类别新鲜度对应的模式。
第三步,模型建立起来之后,研究者就可以测试电子鼻的预测准确度了。研究人员分别对商业包装好的鸡肉、鱼肉和牛肉的新鲜度进行了新鲜度测试。在48小时内,对六种肉类以不同的时间间隔拍摄了超过4000张的条形码图像,其中3475张用于训练捕捉到气味指纹的模式,其余用于准确性测试。最终结果显示,总体准确率到达98.5%,其中变质肉类的准确率100%,识别为新鲜和不太新鲜肉类的准确率为96%和99%。
对于嗅觉AI模型达到这样的准确度,我们其实并不感到意外,虽然人类在识别这些条码颜色上可能会陷入混乱,但是对于计算机来识别这些条码颜色,而且只有三种结果分类来说,简直是小菜一碟。
其实对于一个实验室中的AI模型而言,我们可能更关心的是其是否有落地应用的可能?
嗅觉AI,每一份食物新“标配”?
那么,这款专门用于“肉类新鲜度”识别的电子鼻是否有商用的前景呢?
可能性是有的。首先嗅觉AI的识别准确度显著高于目前常用的一些判断方法,而在识别效率上又明显优于人类的肉眼。
其次是条形码的环保材料和低廉成本,使其很容易集成到包装材料中,并且因其可生物降解性和无毒特性,能够保证环保的情况下用于食品供应链的各个环节,又因其不需要不知笨重的信号收集线的采集方式,也使其能够大量应用于生产和生活场景。
第三是可食用日期的精准预测会带来肉类的更好销售。对于商家而言,可以根据对肉类新鲜程度的判断给出更精准的保质期,从而可以给出更好的价格策略,来对不同日期的肉类进行标价。对于消费者而言,也可以按照这些肉类的新鲜度来安排烹饪的先后时间。
我们也可能质疑这一款应用的实用性。因为对于很多消费者而言,买回家的肉类如果一下子吃不完就直接扔到冷冻柜中,也就不在乎什么新鲜度的问题。
确实,如果将嗅觉AI仅用于肉类这一个场景,其实并没有解决多少的食物浪费问题。商家更多扔掉的是那些看起来卖相不佳的瓜果蔬菜,我们也常常对那些拿不准的食材产生怀疑,并随手丢弃。
- 看不上|为什么还有用户看不上华为Mate40系列来看看内行人怎么说
- 智能手机市场|华为再拿第一!27%的份额领跑全行业,苹果8%排在第四名!
- 培训班|单县残联举办残疾人电子商务培训班
- 长安|长安傍上华为这个大腿,市值暴涨500亿!可见华为影响力之大?
- 手机基带|为了5G降低4G网速?中国移动回应来了:罪魁祸首不是运营商
- 占营收|华为值多少钱
- 车企|华为不造车!但任正非加了一个有效期,3年
- 王文鉴|从工人到千亿掌门人,征服华为三星,只因他36年只坚持做一件事
- 俄罗斯手机市场|被三星、小米击败,华为手机在俄罗斯排名跌至第三!
- 先别|用了周冬雨的照片,我会成为下一个被告?自媒体创作者先别自乱阵脚