复制粘贴|微软亚研院AI编程研究:如何从复制粘贴走向推理合成( 四 )


5
实验结果
Lake 等人建立了一套基准数据集 SCAN,用于评测语义解析系统的组合泛化能力[4]。该数据集上衍生出了多个子任务,用于度量不同方面的组合泛化能力。
例如,ADD_JUMP 子任务用于度量模型是否能够处理新引入元素的组合;LENGTH 子任务用于度量模型是否能够生成超出训练数据中已知长度的组合。研究实验结果表明,LANE 在这些子任务上均达到了100%的准确度。
复制粘贴|微软亚研院AI编程研究:如何从复制粘贴走向推理合成
文章插图
图8:LANE 在 SCAN 的各个子任务上均达到100%的准确度
图9展示了 LANE 中的 Composer (TreeLSTM)学习得到的两个隐式树结构作为示例。TreeLSTM 在具体实现时是二叉化的,将具体进行抽象动作的结点着黑色。可以看到,即使并未引入任意人工预定义的抽象/映射规则,LANE 也能够自动化地探索出符合人类思维的抽象化过程。
图9:示例:LANE 学习得到的两个隐式树结构
新型的端到端神经网络架构 LANE 能够模拟人类的抽象化思维能力,以此学习到数据中潜在的解析表达式映射,从而在 AI 编程(语义解析)任务中获得组合泛化能力。微软亚洲研究院的研究员们希望以此作为一个出发点,探讨深度学习如何由 “鹦鹉范式”(记忆与模仿)走向“乌鸦范式”(探索与归纳),从而延伸其能力边界。
不过目前这还是初步的理论研究,想要应用到更复杂的任务中还需要很多后续工作(例如,提高训练效率、提高容错学习能力、与无监督方法结合等)。
论文:https://arxiv.org/abs/2006.10627
代码:https://github.com/microsoft/ContextualSP
参考文献
[1] 《智能数据分析技术,解锁Excel“对话”新功能》
[2] 《对话即数据流:智能对话的新方法》
[3] 《朋友送了我一个会编程的机器人,说程序员可以下岗了!!!》
[4] Brenden Lake, Marco Baroni. Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. 2018. .
[5] Daniel Keysers, et al. Measuring Compositional Generalization: A Comprehensive Method on Realistic Data. 2019.