按关键词阅读: 智能汽车 汽车行业
在保客里不仅仅是续保这一块,本质上在售后非常多的环节里抓取到相应的需求数据、维保数据等提升相关的售后服务,也对品牌的忠诚度和长期合作具有重要的意义。
第三,新客推广。之前很多的传统主机厂或者自主或合资品牌以及其他的公司都会涉及到比较多拍脑袋的决策。
有些自主品牌的认知的客户是20到30岁的有竞青年的画像。但基于车主的特征做相应的判断和基于一些具类和分类算法去判断之后会发现,品牌更大部分受众在40岁到50岁的年龄段,跟车企拍脑袋决定的客户受众不一样。
如果客户定位环节出现问题,本质上后面的营销推广环节就存在相应的问题。但是通过一些无监督的具类或分类算法可以帮助这些企业识别到真正的客户群体,然后基于这些去做更加个性化或者精准的营销。
文章插图
营销智能化
除了刚刚提到在营销场景,按照生命周期阶段做营销自动化或者营销智能化也是非常关键的一个点。
在主机厂使用营销自动化的平台时,其核心涉及到帮助营销人员操作画布上设置,希望在什么条件下对什么样的人群作出相应的动作,比如试驾之后体验问卷调查,或者针对车主去推送其他的相关服务等情况,到底是应该发送微信、短信还是应该去做电话的关怀或者回访。
这些本质上降低了IT部门在日常的营销活动当中较多的介入和人工做相应的支持,尽可能的让营销人员在不需要写任何代码的情况下,能够自主的去完成营销自动化的每一个相关的环节。
文章插图
在客户数据、数字化应用场景上,整体都应该是以客户为中心,不仅仅在70%、80%场景在于营销的情况下。其实客户的洞察反馈以及C2M或者C2B场景也是非常关键的。
以威马为例,其新车型上市之后,威马特别想关注用户到底在评价它的外观、内饰、电池、性能还是个性化等比较好看。这就是基于所有客户洞察反馈以及基于这些实时的客户相关的一些反馈,能够帮助威马做到更好的服务以及在未来的新的产品的研发或者是个性化制造方面做到更加贴合客户需求。
例如滴滴的应用场景中,因为大多数情况下会是文本类客户数据的存在,在数据越来越大情况下,基于自然语言处理一个事件是顺风车、专车还是出租车的事情,是司乘关系,还是咨询、投诉是愤怒或者开心的情绪,靠人工解决不太现实。机器自然语言处理在AI里面可以帮助滴滴收集客户洞察反馈,实时地解决相应的事件,以及支持到客户洞察或者C2M的场景。
我们帮玛莎拉蒂品牌基于它在国内车主的特征预测其百万级别潜客的购车意向。潜客层面上基于内部DMS或者私域的行为数据等去搭建多层的散发组合模型,经过两年多合作,预测准确率已经训练到接近97%,根据大数据筛选的潜客预约试驾的成功率翻倍提升以及最终相应转化率提升,每天变化可以让销售代表实时查看基于此判断下一步怎么样做相关的推荐。
文章插图
解决目前汽车行业相关问题,有时也需要跳出汽车行业固有的思维去看其他行业在数字化转型里是怎么解决的。
我们在零售行业也做了很多的客户。在星巴克咖啡帮它搭建国内客户数据平台,星巴克APP是它战略里面基于存量客户做数字化营销。在打通多个触点确保同一个用户之后,APP会根据用户需求推不同的券以及食品的搭配。我们帮它做到了90%的预测率,提升一半以上食品、饮料搭配的相关模型。
在旅游行业,春秋航空、东航旅游客户相对高频效果更加明显。通过过去三年几个亿订单以及过去72小时的行为数据,去预测未来7天之内,上亿的乘机人实际会乘坐400条航线中哪一条。
通过接近两年的时间预测准确也做到了接近99%,预测未来7天购买航线的准确率。以前在100条里有0.7到1条转化率,现在提升了10倍。这是基于在自由触点上数据量比较丰富的情况下达到的显著效果。
【 营销|如何在存量时代中利用数据营销挖掘新的增长点】除营销场景以外,大家会发现以客户为中心的场景事实上非常多的开始延展到大于营销场景之外的应用场景,包括这两年都在提的C2M、C2B等个性化的需求到个性化制造,以及个性化需求的这些点。到后面,我们看到有一些主机厂的设计部门或者产品部门也开始关注基于客户数据去打造一些相应的汽车特征。
稿源:(汽车商业评论)
【傻大方】网址:http://www.shadafang.com/c/111J2FM2020.html
标题:营销|如何在存量时代中利用数据营销挖掘新的增长点( 二 )