按关键词阅读:
通过反射光信号对散射进行数字化逆向建模, 在线轮询, 监控空闲纤芯质量, 解决空闲光纤性能监控问题, 实现多路暗光纤并行感知, 如下图所示。
文章插图
空闲纤芯质量智能监控原理示意图
1. 汇聚机房到云, 逐站部署, 实时监控全量芯纤质量。
2. 汇聚机房到楼, 按需预连接, 1 芯以上监控到价值楼宇, 实现点亮光缆到楼宇, 资源预覆盖, 保障专线 TTM。
2) ODN 光虹膜关键技术: 传统ODN网络采用人工管理模式, 运营商无法直观地获取资源和拓扑信息。 数字化ODN实现了资源层数字化管理资源和拓扑信息, 业务层管理业务的在线发放、 扩容和故障管理服务。
传统ODN网络采用人工管理模式, 无法直观地获取资源和拓扑信息, 运维困难。 数字化ODN通过光虹膜技术, 即利用不同用户光信号相位的改变, 结合AI算法识别其连接的ODN端口, 实现了资源层的远程数字化管理, 提升了ODN资源利用准确率, 支撑ODN故障的定界定位。 如图4-4所示, 在以下几方面使能ODN哑资源数字化管理:
远程自动验收: 远程检测FAT端口搜集插损数据并自动记录到ODN管理系统中。
ODN拓扑还原: 基于ODN资源数据库, 可以自动显示、 恢复与更新端到端拓扑信息, 包括PON端口、主干光纤、 FAT端口、 入户配线光纤和ONT连接。
ODN光链路分析: 实现端到端监控与分析光链路插损数据。
动态资源监控: 可以远程自动监控FAT端口利用率。
文章插图
光虹膜技术原理示意图
业务质量感知关键技术。 业务质量感知包括业务和网络两个方面, 实现对二层, 三层以及传输层时延、 丢包和抖动的监测; 通过 Telemetry 等技术实现运行数据实时订阅上报。
业界当前的业务质量检测/探测主要是带外探测技术, 业务检测/探测报文由相关功能模块单独发送和接收, 和用户实际业务流共用转发路径, 与业务报文分离不严格对应, 因此探测结果与实际业务体验有偏差。 针对这个缺点, 业界定义实现了 IOAM 等带内探测技术。 例如在原始数据报文中增加 OAM 检测头, 在业务转发路径中根据检测头进行数据采集, 再通过集中处理单元计算检测结果。 另外, 还可以通过测量业务报文的 TCP/UDP 传输特征, 来提取和计算报文及业务 KPI。 该方案的优势在于可以单节点部署, 可随流检测连接质量。
基于以上技术采集到的数据, 大致分为体验 KQI(卡顿率、 加载时间等) 和应用 KPI(时延、 抖动等)两层; 体验 KQI 可以参考行标 YDT 2691 的定义, KQI 指标一般需要在内容侧和终端侧直接度量, 部分应用的 KQI 也可以采用 DPI 方式进行测量, 但该方式依赖对应用层内容的解析, 定制化较强, 不具备通用性。由于体验 KQI 和应用 KPI 通常存在定性关系, 应用 KPI 可在传输层进行指标建模, 不依赖于具体应用, 具有更好的通用性。
2、云地协同全栈 AI 技术光网络 AI 技术研究面对模型泛化能力差、 模型部署要求算力高、 本地样本少/标注难、 大数据管理困难等问题, 需要探索一种新的 AI 技术架构应对这些问题, 加速 AI 应用的规模部署。 新的 AI 技术架构需要满足具有以下特点:
1) 针对模型泛化能力差问题: AI 模型应具有在线学习能力, 能够不断学习网络新特征、 新变化。
2) 针对模型部署算力要求高问题: AI 模型训练应可集中部署在算力中心或者支持分布式训练部署。
3) 针对样本少/标注难问题: 需要发挥群体智能, 多数据持有者之间相互贡献数据, 为 AI 模型在线学习提供坚实数据基础。
4) 针对大数据管理困难: 网络数据种类多、 产生数据快, 大量网元产生的 KPI、 日志、 告警等海量数据, 需要建立专业体系化的数据治理工程。
针对光网络多边缘设备+中心控制的组网特点, 云地协同 AI 技术架构是解决上述挑战的最佳解决方案。
云地协同是指云端和地端协作完成数据样本上云、 模型状态管理、 模型重训练、 模型/知识下发、 择优更新等一系列的闭环任务, 同时把云端汇集的全局网络知识经验、 全量数据训练得到的高精度模型, 持续注入地端, 让光网络 AI 能够进行智能迭代升级, 变得越来越聪明, 如下图所示。
AI 服务包含数据治理服务、 模型训练服务、 专家经验辅助服务, 涉及运营商大量运营数据、 用户数据、网络数据, 对数据安全要求很高, 云端适合部署在 IT 云。 实时海量数据并发上报、 处理加剧整网压力,在地端(包含管控系统、 网元设备) 部署分布式 AI, 就近处理本地实时海量数据。
稿源:(智东西)
【傻大方】网址:http://www.shadafang.com/c/1115960M22021.html
标题:智东西内参| 白皮书( 三 )