按关键词阅读:
切片智能优化调度场景。 8K 视频业务, VR/云游戏等高清视频类业务强交互、 高并发, 与传统上网、 语音等弱交互、 统计复用业务相比, 对网络带宽、 时延、 丢包率等要求迥异, 需要为此类新兴业务预留独立的资源以保障业务体验,依赖人工根据业务变化动态调整资源分配基本不可行, 引入 AI 智能的切片调度, 保障不同业务的差异化体验需求。
二、 光网络 AI 关键实现技术面向光网络哑资源数智化管理、 网络数智化分析需求, 通过引入AI和数字化技术, 提出光网络AI应用解决方案, 推进网络运维数智化转型, 实现运维提质增效, 牵引网络技术变革。
光网络AI应用解决方案架构可以为运营商提供哑资源管理、 智能规划、 智能运营、 智能维护和智能优化等AI应用, 实现全生命周期自动化、 智能化运维, 支撑政企和家宽业务高品质发展。 整体架构图如下图所示。
文章插图
光网络 AI 应用解决方案架构图
1、 融合感知技术光网络感知技术。面对高复杂度的多参量光网络系统, 为了能够全面、 精准、 实时感知光网络状态, 网元系统和管控系统需要从维度、 精度、 频度等多个角度进行光 Sensor 数据的分层采集和汇聚, 并通过 AI 算法对原始光Sensor 数据进行数据挖掘, 支撑光网络的各类业务场景。
网元设备, 分层采集:光 Sensor 技术是以光技术手段感知、 检测多种物理量, 并将模拟物理量数字化的一种技术。 网元系统将光 Sensor 技术采集的数据进行 4 层划分, 分层采集: 光业务层、 光部件层、 光信道层、 光链路层。
光业务层数据主要是客户关注的业务属性指标, 比如带宽、 时延、 误码、 保护倒换时长等指标; 光部件层数据主要是采集光部件的物理指标, 包括功率、 温度、 电压、 频偏等; 光信道层数据关注点在于信道的属性特征, 类似信道编号、 光信噪比、 单波功率等; 光链路层数据集中在链路侧的特征, 包含光纤损耗、 光纤类型、 光纤事件等。
管控系统:1) 数据汇聚: 考虑到数据存储结构和内容的差异性, 管控系统需要将采集的数据进行分类汇聚, 可分为资源数据底座和性能数据底座。 资源数据底座汇聚的数据主要是静态的存量数据, 比如业务存量数据、网络拓扑存量等。 性能数据底座汇聚的数据主要的非静态的性能数据, 比如性能、 告警、 日志等随着网络运行动态变化的数据。
2) 数据挖掘: 汇聚的资源和性能原始数据表达的信息量始终是有限的, 因此分析系统需要基于 AI 算法技术对光 Sensor 数据进行数据挖掘获得额外的信息量, 用于支撑感知、 诊断、 预测、 控制等多类业务场景。
高性能数据流转技术。 面临光 Sensor 生产的海量数据, 需要一套灵活、 高并发的数据采集技术并确保数据高效流向管控系统。 光网络中使用的高效流转技术是建立网元设备内和网元设备与管控系统间的高速传输通道, 实施网元设备分布式本地决策和管控系统集中式智能控制两层处理, 协同完成决策, 如下图所示。
文章插图
高性能数据流转架构示意图
网元设备内高效采集: 网元设备按照数据量的大小和时间精度分为高速采集和低速采集。1) 硬件上, 在网元设备为关键 Sensor 开辟快速外送数据到硬件通道, 使用高速缓存区存储多端口高精度数据(如毫秒级)。
2) 软件上, 构建统一大采集数据框架, 抽象建模光 Sensor 数据采集项, 灵活控制多单板多端口的数据并发采集, 并使用内存共享技术高效读写。
网元设备与管控系统间高效传输:
1) AI 需要更多、 更高频次、 更精准的参量采样, 参量上报通道带宽诉求出现 x104级别变化, 硬件架构上需提供更大的 DCN 吞吐能力。
2) 传统的参量查询式响应仅适合低速、 低频次访问, 无法满足 AI 海量参量上报诉求, 软件架构需要基于订阅式访问机制(如 Telemetry), 用于批量参量上报, 提供高效海量数据传输。
网元设备与管控系统分层处理: 网元设备和管控系统间需尽量减少不必要的数据传输, 采用分层处理机制, 网元设备需预处理数据, 对数据进行整合(例如: 毫秒级数据提取成秒级数据) 或特征提取, 并采用数据压缩技术降低数据传输量。 管控系统根据必须的网元设备级数据进行网络级决策控制。
哑资源感知技术。 1) 多路暗光纤并行感知关键技术: 现网光缆数量庞大, 当前主要依靠人工管理, 性能不可视、 故障不可视, 管理效率和资源准确度面临极大挑战。 例行巡检光纤质量, 耗时耗力、 成本高、 误差大; 业务扩容临时查找可用纤芯耗时长, 业务 TTM 保障难。
稿源:(智东西)
【傻大方】网址:http://www.shadafang.com/c/1115960M22021.html
标题:智东西内参| 白皮书( 二 )