按关键词阅读: 欧洲 gmail
(二)镜片的度数、厚度与品类(如近视眼镜与墨镜)不一,造成光线的反射率也不一样,因此隐形二维码的嵌入方式与位置也会有所差异。
(三)镜片的材质是透明玻璃,会反光。即使是没有任何折射角度的无度数镜片,机器也不一定能在透明的介质上自动识别到隐形二维码。更严峻的现实是,镜片分为凹透镜与凸透镜,度数不一,光线折射的角度也不一。
文章插图
图 / 镜片中的二维码极小,只有在特定的角度与光线上才能显现
思谋科技的解决方案架构师周工介绍,识别隐形二维码的技术难度绝对处于金字塔的顶尖级别:
「就打光来说,它就已经完全颠覆了传统的视觉打光方式。传统的打光方式是被测物体与打光镜头基本成一个相对位置,比如被测物垂直于光源,直接受光。而在隐形二维码的识别技术中,被测物的点阵二维码的呈现是通过思谋自研光源发出光束穿过镜片直接照射到膜材、然后反射回直径小于0.125毫米的一群小光束的原理。」
借用贾佳亚对半导体产品缺陷检测难度的表述,要在曲面类型多样的玻璃镜片上准确识别直径只有0.125毫米的隐形二维码,难度绝对比「在整个广东省内,一秒钟内定位出一个有轻微故障的红绿灯」还要高!
这不仅要求研发团队具备算法能力,他们还要精通光学原理与膜材设计。
换作普通的光学厂商,一遇到这么棘手的问题,可能早就摆手不干、寻找其他性价比更快的替代方案了。但Z这样历史悠久、实力雄厚的企业不同,他们作为标杆,凡事追求「最好」,毕竟具备足够的技术创新条件。而不断追求技术实力甩对手几条街的理念,也正是他们能够伫立国际市场多年而不倒的根源所在。
所以,即使难度重重,Z也不惜克服万难,寻找可以定位并识别隐形二维码这一「小滑头」的方法。
此前,Z识别隐形二维码的方法主要有两种:
第一种是「源头管控」,开模时就预先在模具上刻出隐形二维码,在镜片成型时将二维码一同印在镜片上,然后通过模具的编号进行镜片追溯。这种方法的短板是只能在源头管控。
隐形二维码就相当于一个镜片的「身份证」,每完成一道生产工序就要进行一次识别,以证明该二维码「顺利」地走完了所有工序。因此,如果只是在源头管控,就相当于只监测到了最开始的开模工序,无法通过在全产线中追踪该二维码、以把控每一个生产环节的质量。
第二种方法是高价购入一台德国隐形码识别设备。但很遗憾,这是一台单体设备,只能人工手动检测,识别的速度慢,价格也十分高昂。此外,由于设备从德国进口,受知识产权的保护,Z只能购买标准的模块,无法集成其他设备,也就是无法配合他们的产线进行定制化设计。
3、副歌
当时,作为一家刚成立不到一年的「小厂」,思谋科技选择挑战Z的这个项目,更多是想要抓住一个重要的「成长机会」。
他们的目标阵地是工业产品的外观检测,如果能成功突破镜片隐形二维码识别的技术,那么对他们进军精密光学领域自然大有帮助。
所以,在刚接到任务时,他们也是心情澎湃,撸起袖子就准备大干一场。
但理想很丰满,现实很骨感。很快他们就发现:事情没有那么简单。
虽是「识别」,但他们要攻克的技术却不只是机器的「眼睛」,还有目标识别物背后的光学原理。而且,后者才是他们要面对的「大boss」。
文章插图
所幸,思谋有先见之明,在刚成立时就为进军工业赛道筹备了两大团队。在工业产品缺陷检测中,核心技术有两个:一是视觉算法,二是光学成像。所以,除了贾佳亚、沈小勇带领的CV能人,思谋在一开始就成立了一个光学实验室,并招募了一批经验老道的光学系统研发人才。
机器要识别的隐形二维码大小为2mm*2mm,其中,每一个小方块(即「点阵」)的直径则是0.125mm。
从光学的原理来看,在打光时,镜片的膜材料必须将光源分解为一束束直径比125μm还小的光束,隐形二维码才能显现出来。这是因为光束通过微小间隙后的传播不一定是线性的,如果同时通过两个小孔,就会产生衍射条纹。而衍射条纹并不是固定的,就会导致检测失败。
此外,镜片是一种三层结构,即「空气-膜-玻璃」。光的入射角、膜的厚度与折射率等等都会影响光的传播,某些角度下甚至可能在膜里产生全反射,导致隐形的二维码无法被检测。
稿源:(雷锋网)
【傻大方】网址:http://www.shadafang.com/c/111295Q422021.html
标题:团队|想征服精密光学的AI团队,差点被一个隐形二维码拦住( 三 )