通用|费曼1985年对通用人工智能的思考( 二 )


所以,人类到底在哪些方面做得比计算机更好,有很多方面。
通用|费曼1985年对通用人工智能的思考】但最主要的是我们对事物的分别和认知能力,比如如果我们在街上走着走着,很远就能通过一个人的走路方式或者大致外貌初步判断那人是否是我们的熟人。而这对于计算机来说几乎是无法具体细致地进行模拟的,但计算机也许可以通过获取和比对大量数据来做到这一点。
比如我们如果想让一个程序能判断任意一张图片是偏亮还是偏暗,那一种可能的做法是给这个程序提供很多明暗对比明显的图片,供其进行分析和对比,以使得其能在我们给它任意一张图片,都能对该图片的亮度信息进行评估。”
通用|费曼1985年对通用人工智能的思考
文章插图
“计算机科学不像物理学那样古老,它晚了几百年。然而,这并不意味着计算机科学家的盘子比物理学家的盘子要少得多:它可能更年轻,但它的成长经历却要激烈得多!” 图片出处:azquotes.com/quote/1411169
1985年时人工智能现状
费曼回答的上一部分内容,便提到了从大数据中学习识别特定 pattern 的机器智能。
既然存在这种类型的机器智能,他又尝试探讨了 “训练集的方差和偏差如何折中” 的问题。这部分回答或许带有些时代的局限性。
在机器学习中,偏差较小的数据模型套用在样本上会产出一个较大的方差,而偏差较大的模型放在样本集上则会产出一个较小的方差,偏差 - 方差问题实际上代表的是对于机器学习算法之结果的一个优化问题,即我们如何才能最小化算法中的错误假设所带来的偏差,以及如何才能让模型对足够小的数据波动敏感。
他说:“难点在于,在实际情况中,我们能提供给计算机的潜在信息是多种多样的,比如在刚才的那个‘从远处辨别熟人’的例子中,计算机需要处理的信息可能有灯光条件、距离条件和目标的一些条件,比如辨识目标的倾斜程度,电脑必须能知道如何使用这些信息才行,甚至我们其实目前也讲不清楚,究竟人是怎么通过分析这么多信息并最终得出结论的。
所以,即使我们未来能造出拥有足够算力和内存的计算机,可能也不知道该怎么将这一过程写为可靠的程式,使计算机能稳定地解决这类问题。目前来看,识别问题还是一个人类能轻易解决,但对计算机来说很难的问题,比如警局或者信息局可能会有比对指纹的专员,如果该专员经验丰富,那他在仔细观察指纹样本后就能对其进行分类,但这对计算来说几乎是不可能的,原因是我们几乎无从得知比对专员在分类时都具体使用的是哪些信息,以及在分类时所采用的标准。”
最后,就着 “指纹问题”,费曼对当时人工智能的现状进行了评价:
“对一般人来说,指纹问题可能听上去并不是很难,比如现在有两个指纹,然后我们需要比对这两个指纹上的血迹是否一样,但问题远没有它看上去那么简单。
指纹是不是被污染过,取样时手指的朝向和压力是多少,比对两个基准完全一致的图片是简单的,但如果采样的时候前一个比后一个朝向偏了一点,或者压力重了一点,或者表面被污染了一点,这些对我们来说可能‘是可被解决的’,但对于计算机来说却几乎是不可能的解决的问题,即使真有算法能通过排除各种因素解决问题,其在效率上也将是不切实际的。
所以,目前来看,我个人并不清楚人工智能技术正在往哪个方向发展,但该领域的研究者们无疑正在尝试解决我们之前所谈及的那些,对计算机来说‘棘手’的问题。
我觉得,可能就像我们能轻易分辨和认知事物一样,计算机擅长的或许是在给定一种模式或模型的情况下不带疑问地执行它,就比如国际象棋 AI 能比人类下得更好一样,但人类就很难做到这一点(快速掌握一种特有模式并直接使用)。”
参考资料
[1] https://medium.com/cantors-paradise/richard-feynman-on-artificial-general-intelligence-2c1b9d8aae31
本文经授权转载自微信公众号“数据实战派”。