叠加PLG和社区模式的「和鲸科技」获36氪首发 | 产品( 三 )


叠加PLG和社区模式的「和鲸科技」获36氪首发 | 产品
文章插图
产品体验推动增长(PLG)
以解放军总医院、协和医学院等头部的医疗客户为例,范向伟在采访中介绍到,医学的复杂性很高,数据智能也是刚需,但医生、研究人员普遍不具备专业的编程能力。ModelWhale可以通过低代码的简单易学的方式,最小化技能门槛,并通过协同能力,使IT、临床、研究等不同岗位的人才相互配合,通过背靠背的协作,实现数据应用的价值闭环。通过社区用户覆盖头部客户,再通过头部客户的实践,实现腰部客户的复制,成为了和鲸的业务增长的效率杠杆。
头部客户的成功落地,为其他的机构、企业提供了平台落地的背书与示范。基于头部机构知识库、案例库的沉淀,数据平台从产品到落地,也逐渐走向了标准化、普及化。范向伟对此介绍到,和鲸在和解放军总医院、协和医学院等头部医院的合作中,其实也是在共建算法库、知识库、案例库。头部机构的机器学习、人工智能的课程与案例,本身就是面向行业中的医生和学生的。目前和鲸与头部医院、头部药企共同组织的数据竞赛,每年覆盖的人数可达到上千人、几百家医院。
除了医疗、生命科学等科研场景,在企业场景中,数据平台不仅要面对大量IT系统的对接、打通需求,还要面对复杂的业务场景,这使得销售成本、实施成本、研发成本都很高。如果产品无法定位到精准的应用场景、用户人群,无法用可控的成本满足客户需求,实现数据价值的落地,那么数据平台产品的采购、复购的成功率就会很低,研发和分销也无法实现提速,这会形成一种恶性循环。
数据科学平台的选型和落地,有着很高的复杂性和实施风险,客户的产品选型是高度谨慎的,公司在头部客户在选型和落地上的经验积累,提升了公司标准产品的服务能力和规模商用的影响力。公司表示,目前和鲸科技已在气象、医疗、科研、能源、金融等领域实现了部分头部客户的覆盖与转化,以及高比例的复购与增购。
叠加PLG和社区模式的「和鲸科技」获36氪首发 | 产品
文章插图
产品体验推动增长(PLG)
坚持PLG路线,和鲸社区成为留住客户的流量池SLG(销售驱动增长)卖软件靠的是销售渠道,而PLG(产品主导型增长)更注重用户和产品,通过产品自身实现获客。此模式获客成本低、增长速度快、迭代效率高,典型公司比如Atlassian、Canva、Zoom等。PLG对产品研发与市场营销,都提出了很高的要求,中国目前能够面向头部客户,走通PLG的企业仍是少数。
随着企业对成本-效益和可持续性的敏感度提升,为了满足客户需求,服务商就需要提供更低成本、更快迭代、更高效率的方案。PLG模式对于企业客户也意味着更低的试错成本、部署成本和维护成本。顺应企业客户的需求和技术发展的趋势,是整个SaaS行业在重点探索的方向。
PLG模式的商业逻辑是产品主导、加速迭代。推出高质量的产品是前提,而产品优质首先需要有足够深的用户洞察。只有围绕用户洞察和用户痛点,才能持续地验证产品设计、提升产品性能、叠加产品壁垒。所以PLG的逻辑起点是,平台公司需要先找到核心用户、形成与核心用户之间的共生关系。
和鲸科技的前身是科赛网,现在已经演化为拥有25万注册的和鲸社区,社区在过去六年保持了每年100%的增速,成为了最大的第三方的数据人才社区之一,注册人群覆盖了全国的主流高校、研究院和企业。和CSDN等传统开发者社区相比,和鲸社区的差异化能力,在于数据分析的流程、代码、结果是可以在线运行、实现端到端的复现,其他用户可以对社区内的模板进行运行、修改和进一步的分享。
叠加PLG和社区模式的「和鲸科技」获36氪首发 | 产品
文章插图
和鲸社区交互界面
和鲸社区通过和各个行业的头部客户合作,已组织了超过200场专业数据科学与人工智能竞赛,累计有10万多数据人才参加,解决了超过20类人工智能业务问题,累计算法解决方案2000多项。数据竞赛将数据、算法、人才和行业应用场景汇集在一起,形成了聚集效应。多年的数据竞赛服务经验,也提升了和鲸在数据人才和行业企业中的知名度和影响力。
叠加PLG和社区模式的「和鲸科技」获36氪首发 | 产品】竞赛和社区为和鲸带来了大量精准的专业用户群体,也为数据科学协同平台ModelWhale的发展提供了多方面的赋能。在采访中,范向伟提到社区和竞赛,一定程度上降低了数据平台的综合成本。对此他解释到,建设数据平台的成本上包括三个方面,一是开发成本,开发起步阶段常常需要超过数十人的开发团队、上亿的投资金额;二是销售成本,平台的销售周期很长,面对激烈的竞争,需要维护庞大的销售团队和售前团队,很多技术厂商的销售成本会占到总成本的五成以上;三是服务成本与定制化成本,因为数据平台在企业的落地场景丰富而复杂,数据平台解决不了的业务问题,往往需要较高强度的定制化和服务来打补丁。