RFM模型的搭建细节以及适用场景有哪些?( 二 )
这种方法个人觉得比较简单易行,比较推荐。
关于偏态分布(以右偏为例)下,众数、中位数、均值有以下关系:
除了用统计量直接作为阈值外,第三种方法,也是市面上看到比较多的方法,就是打分法。
所谓的打分法,就是先将原始的R、F、M数值划分为1~5的分数,然后求分数均值,作为划分阈值。例如下图:
文章插图
这种方法吧,挺忙活,又是打分又是求均值的。但我个人不太建议。一方面,原本只需要计算一个阈值就好了,现在需要先划分成5段,那这5段该怎么划分才合理呢?其次,这种打分的意义在哪,还增加了计算复杂度。
如果是解决异常值或者分布不均的问题,用分位数的方法就好了,我并没有太想明白市面上大行其道的打分法的意义在哪。我想到了一种可能,就是打分为了使三个维度可以在同一量纲上,进行衡量,以此可以计算一个用户的综合RFM得分,进行综合得分的排名。如下图:
文章插图
如果是这样,那我觉得,是不是用打分法就主要依赖于模型目标了。若为了划分为8个离散的用户层,就没必要打分;若为了求用户的综合RFM得分,需要打分。除此之外,我确实想不到打分的意义了。希望大神指点。
4. 用户分层计算经历了上面不同阈值划分方法的纷争,下面就比较顺畅了,那就是用户分层的计算。
这一步比较容易理解,直接根据定好的三个阈值,判断每个用户属于哪个区间,然后打标即可。不赘述了。
5. 模型优化所谓的模型优化,主要还是在于阈值的调整。
要随着最终划分的人群以及相关的运营效果、活动规律,调整阈值的设定,最终达到一个最合理的划分。
三、RFM模型的优缺点本文开头也提到了,RFM模型的应用广泛,是有很大优点的,但缺点也是不少,现在来和大家一起探讨一下。
1. 模型的优点最大的优点,应该是数据的可获得性。
目前在互联网中,基本对于数据的收集做的还是比较完备了,采集了用户的各种行为数据等,可以更好的进行用户打标签、分层的操作。但是在传统行业中,没有太多的行为数据,其实能用的数据比较有限。
但是,无论公司的数据做的有多不完备,也一定是有成交数据的(除非这个公司没收入……)。只要有成交数据,就能进行RFM的分析,这是最大的优势。而且,基于成交数据做的RFM模型,还是比较有效的。
其次,模型的分层可解释性强。
其他很多算法模型、机器学习模型,往往通过聚类进行用户的分层,对于业务来讲,不是很好解释。但RFM模型分成的8个用户类别,是非常好理解的。
2. 模型的缺点RFM模型其实是滞后性的分析模型,只有当用户发生了购买行为后,才能进行RFM的分析。而且模型的前提假设就是用户的前后行为是无差别的。
另外,使用该模型需要注意的是,不同行业的应用,是有差别的。
最典型的是就是快消品和耐消品的差别。对于耐消品而言,RFM分析并不是一个很行之有效的模型。例如冰箱的购买,用户购买一台冰箱后可能十几年都没有购买了,这是没办法用RFM分析的。如果强搬硬套,是没有任何意义的。
以上是今天和大家分享的内容,欢迎大家继续关注~
本文由 @冬至 原创发布于人人都是产品经理,未经作者许可,禁止转载。
【RFM模型的搭建细节以及适用场景有哪些?】题图来自Unsplash,基于CC0协议。
- 小米科技|性价比拉满!TCL T8E-PRO QLED智屏当属潮玩世代的必备单品
- 华为鸿蒙系统|华为汽车战略布局,进入汽车行业的底气来自哪里?(车车佳)
- 浙江省|浙江的五大富豪,四位做过中国首富,仅马云的阿里就1年纳税366亿
- iOS|恒创科技:Linux日本云服务器安全设置的基本步骤
- javascript|手机移动端的PyTorch来了,还支持JavaScript
- 中关村|柳传志在这里被骗、掘金,书写半部科技史的中关村经历了什么?
- 手机维修|手机维修的猫腻‖你是不是上当了?
- 智能化|感知局限下,车路协同的“子弹”还得再飞会儿
- 华为鸿蒙系统|都2021年底了,为何Mate40Pro还是目前公认最好用的“安卓”手机
- saas|上半年的Redmi K40 Pro,现在入手2500元不到,还等?