RFM模型的搭建细节以及适用场景有哪些?

编辑导读:RFM分析,一种将用户分层、进而针对不同用户群体进行精细化运营的方法。在应用RFM分析模型中,实际操作中会存在很多问题。本文作者围绕RFM模型的搭建细节以及适用场景展开分析,希望对你有帮助。
RFM模型的搭建细节以及适用场景有哪些?
文章插图
“RFM分析,是用户精细化运营中比较常见的分析方法了。”
今天和大家分享一下数据分析中比较常用的一个分析框架:RFM分析。该模型用的很多,说明有模型自身的优势;但同时也存在很多的问题。今天和大家一起探讨。
一、什么是RFM分析RFM分析,其实是一种将用户分层、进而针对不同用户群体进行精细化运营的方法。
RFM的三个字母,分别代表了一个维度:

  • R(Recency):最近一次消费时间。反映了用户最近消费的热度,用以衡量用户是否流失。理论上,最近一次消费时间越长,流失概率越高
  • F(Frequency):用户的消费频率。反映了用户对于产品、品牌的忠诚程度。理论上,一定时间内的购买频率越高,用户忠诚度越高
  • M(Monetary):消费金额。反映了用户的购买力。
通常来讲,是针对每个维度设定一个阈值,将用户群体划分为二(高于阈值、低于阈值),三个维度齐下,则可以将用户整体划分为2^3=8个用户细分群。如下图:
RFM模型的搭建细节以及适用场景有哪些?
文章插图
有了用户的细分,可以针对细分用户进行精细化的营销。比如针对【重要价值客户】应该做好用户的权益维系,针对【重要保持客户】做好客户的流失挽回。
关于模型的大体含义和应用价值,就简述一二,详细的请继续。
二、如何进行RFM建模RFM模型的建立,总结起来一般可以分为以下几步。
1. 关于原始数据从定义中我们可以看出来,R、F、M其实都是和消费相关的。因此,关于RFM模型的搭建,使用的原始数据很明确:订单表交易表。
而且,使用的维度其实并不需要很复杂,只要有以下的维度就足够了:
即我们只要有用户唯一标识、消费时间、消费金额,这三个字段的明细,就可以来搭建RFM的分析模型了。
当然,对于原始数据有一些数据清洗的工作,这里就不赘述了。比如选取的是成交的订单,而不是下单未支付的;比如选取的是排除大机构的订单……等等。
2. 三个维度的加工计算基于上面的原始订单数据,下一步就是RFM三个维度的加工。这里面,有很多细节的问题。
首先,关于最近一次消费时间的计算。这个指标的定义比较明确,直接取最近一次消费的时间和当前时间做差就好。
关于消费频率的计算,必须有时间范围的设定。那具体是设置最近一年的消费频率(即购买了几次),还是最近1个月的消费频率呢?这是有很大差别的。通常来讲,这个范围的设定和分析用户的行业有很大关联。比如快消品,统计用户的几个月的时间就够了,但耐消品,显然不是。统计一年的,可能用户都没有复购。
关于消费金额。这里和消费频率一样,也是要有时间范围设定的,道理也是一样的。确定好了时间范围,直接做sum就行,没有太多的疑惑。
因此参数的设定,没有固定的标准,要多结合自己所处的行业规律。加工完是这样的表:
3. 阈值的划分加工好了基础的三个维度的统计指标,接下来就是进行划分阈值的确定。即确定基于多大的数值,将每个维度的用户进行分段划分。
通常来讲,每个维度只需要确定一个阈值即可,这样可以将总体用户划分为8个分段。但现在还有一种套路是每个维度划分为5段,将总体划分为5^3共计125个分层,美其名曰【细分】。但我个人是不认可的。我觉得RFM分析的重要意义就是用户细分的可解释及可落地性,划分成125个用户群体,你该如何精细化运营呢?最终还是要进行合并。
OK,我们还是按照正常8分层来讲。我们看到上面的统计聚合表了,往往分布是下图的样子(以R为例):
RFM模型的搭建细节以及适用场景有哪些?
文章插图
如何划分为两群用户呢?这时有很多种不同的方法了。
第一种方法,采取均值的方法。我个人是不太建议用均值作为阈值的。因为现实情况经常有一些异常值,会影响均值的计算。而数据清洗的时候很难都排掉异常。
第二种方法,是采取中位数(或者其他分位数,比如20%分位)的方法。这种方法直接将排序后的用户按照数量进行划分,中位数可以将人群一分为均等两份,其他分位数也可以有合理的业务解释:20%的用户贡献了80%的作用,等等。