文章插图
数学家格奥尔格·康托尔
格奥尔格·康托尔(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3-1918.1.6)德国数学家,集合论的创始人 。
01
由康托尔首创的全新且具有划时代意义的集合论,从根本上改造了数学的结构,促进了数学的其他许多新的分支的建立和发展,成为实变函数论、代数拓扑、群论和泛函分析等理论的基础,还给逻辑和哲学带来了深远的影响 。不过康托尔的集合论并不是完美无缺的,一方面,康托尔对“连续统假设”和“良序性定理”始终束手无策;另一方面,19和20世纪之交发现的布拉利-福蒂悖论、康托尔悖论和罗素悖论,使人们对集合论的可靠性产生了严重的怀疑 。加之集合论的出现确实冲击了传统的观念,颠倒了许多前人的想法,很难为当时的数学家所接受,遭到了许多人的反对,其中反对的最激烈的是柏林学派的代表人物之一、构造主义者克罗内克 。克罗内克认为,数学的对象必须是可构造出来的,不可用有限步骤构造出来的都是可疑的,不应作为数学的对象,他反对无理数和连续函数的理论,同样严厉批评和恶毒攻击康托尔的无穷集合和超限数理论不是数学而是神秘主义 。他说康托尔的集合论空空洞洞毫无内容 。除了克罗尼克之外,还有一些著名数学家也对集合论发表了反对意见 。法国数学家庞加莱说:“我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西” 。他把集合论当作一个有趣的“病理学的情形”来谈,并且预测说:“后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了” 。德国数学家外尔认为,康托尔关于基数的等级观点是“雾上之雾” 。克莱因也不赞成集合论的思想 。数学家H.A.施瓦兹原来是康托尔的好友,但他由于反对集合论而同康托尔断交 。集合论的悖论出现之后,他们开始认为集合论根本是一种病态,他们以不同的方式发展为经验主义、半经验主义、直觉主义、构造主义等学派,在基础大战中,构成反康托尔的阵营 。
1884年,由于连续统假设长期得不到证明,再加上与克罗内克的尖锐对立,精神上屡遭打击,5月底,他支持不住了,第一次精神崩溃 。他的精神沮丧,不能很好地集中研究集合论,从此深深地卷入神学、哲学及文学的争论而不能自拔 。不过每当他恢复常态时,他的思想总变得超乎寻常的清晰,继续他的集合论的工作 。
康托尔的集合论得到公开的承认和热情的称赞应该说首先在瑞士苏黎世召开的第一届国际数学家大会上表现出来 。瑞士苏黎世理工大学教授胡尔维茨在他的综合报告中,明确地阐述康托尔集合论对函数论的进展所起的巨大推动作用,这破天荒第一次向国际数学界显示康托尔的集合论不是可有可无的哲学,而是真正对数学发展起作用的理论工具 。在分组会上,法国数学家阿达玛,也报告康托尔对他的工作的重要作用 。随着时间的推移,人们逐渐认识到集合论的重要性 。希尔伯特高度赞誉康托尔的集合论“是数学天才最优秀的作品”,“是人类纯粹智力活动的最高成就之一”,“是这个时代所能夸耀的最巨大的工作” 。在1900年第二届国际数学家大会上,希尔伯特高度评价了康托尔工作的重要性,并把康托尔的连续统假设列入20世纪初有待解决的23个重要数学问题之首 。当康托尔的朴素集合论出现一系列悖论时,克罗内克的后继者布劳威尔等人借此大做文章,希尔伯特用坚定的语言向他的同代人宣布:“没有任何人能将我们从康托尔所创造的伊甸园中驱赶出来” 。
02
康托尔对数学的主要贡献是创立了全新且具有划时代意义的集合论和超穷数理论;这从根本上改造了数学的结构,促进了数学的其他许多新的分支的建立和发展,还给逻辑学带来了深远的影响 。
两千多年来,科学家们接触到无穷,却又无力去把握和认识它,这的确是向人类提出的尖锐挑战 。康托尔以其思维之独特,想象力之丰富,方法之新颖绘制了一幅人类智慧的精品——集合论和超穷数理论,令19、20世纪之交的整个数学界、甚至哲学界感到震惊 。可以毫不夸张地讲,“关于数学无穷的革命几乎是由他一个人独立完成的 。”
【数学家格奥尔格·康托尔集合论的故事】
- 数学家冯康研究动态问题的故事
- 数学家克罗狄斯·托勒密大地测量的故事
- 数学家薛凤祚建议种麦子的故事
- 数学家克罗狄斯·托勒密地心说的故事
- 数学家理查德·柯朗战争中的故事
- 数学家郭守敬制造仪器的故事
- 数学家费拉里四次方程的故事
- 数学家王见定半解析函数的故事
- 数学家王诗宬获奖的故事
- 数学家斐波那契兔子的故事