本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明.
定义1.费马方程
人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数.
在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶.当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支.
定义2.增元求解法
在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算.我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法.
利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单.
下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值.
一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则”
定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件:
a≥3
{ b=(a^2-Q^2)÷2Q
c= Q+b
则此时,a^2+b^2=c^2是整数解;
证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形:
Q2 Qb
其缺口刚好是一个边长为b的正方形.补足缺口面积b^2后可得到一个边长
Qb
为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长.
故定理1得证
应用例子:
例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解?
取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到:
a= 15
{ b=(a^2- Q^2)÷2Q=(15^2-1^2)÷2 =112
c=Q+b=1+112=113
所以得到平方整数解15^2+112^2=113^2
再取a为15,选增元项Q为3,根据定a计算法则得到:
a= 15
{ b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36
c=Q+b=3+36=39
所以得到平方整数解15^2+36^2=39^2
定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解.
二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则”
定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解.
证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c;
b 2b
3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c;
3b 4b
3a、3b、3c;4a、4b、4c… na、nb、nc都是整数.
故定理2得证
应用例子:
例2.证明303^2+404^2=505^2是整数解?
解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计
4
算法则,以直角三角形 3×101 5×101 关系为边长时,必有
4×101
303^2+404^2=505^2是整数解.
三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则”
3a + 2c + n = a1
(这里n=b-a之差,n=1、2、3…)
定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解.
证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有:
a1=3×3+2×5+1=20 这时得到
20^2+21^2=29^2 继续利用公式计算得到:
a2=3×20+2×29+1=119 这时得到
119^2+120^2=169^2 继续利用公式计算得到
a3=3×119+2×169+1=696 这时得到
696^2+697^2=985^2
…
故定差为1关系成立
现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有:
a1=3×21+2×35+7=140 这时得到
140^2+147^2=203^2 继续利用公式计算得到:
a2=3×140+2×203+7=833 这时得到
833^2+840^2=1183^2 继续利用公式计算得到:
a3=3×833+2×1183+7=4872 这时得到
- 关于猴子的著名数学定理:无限猴子定理——概率与统计
- 通过趣味数学段子的学习让孩子在短时间内轻松搞定小学数学概念
- 扑克牌中的趣味数学:利用数学二进制玩转扑克牌魔术
- 全宋词与趣味数学:那些宋词密码中隐藏的古诗——趣味密码学的应用
- 数学家王元的故事:被誉为数学寰宇中的摘星人【哥德巴赫猜想】
- 趣谈数学发展:数学文化与我们的世界
- 2019届上海小升初科普:全市招生的民办学校
- 数学家杨乐对数学学习的理解:学习数学就像万米赛跑,需要始终如一的努力
- 天才数学家约翰·纳什的人生故事:无常命运中的美丽心灵以及纳什均衡理论
- 古希腊数学家泰勒斯的故事:据说一年365天是他所定