基本原理:
是将分类点正确区分,使得分隔的距离最大,可以转化为凸二次规划问题来求解 。
概念:
支持向量机是常见的一种判别方法,在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析 。
主要思想:
1、它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;
2、它基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界 。
支持向量机的基本原理是什么?支持向量机回归分为线性回归和非线性回归,其原理如下:
(1)支持向量机线性回归
设样本集为:(x1,y1),…,(xi,yi),x∈Rn,y∈R,回归函数用下列线性方程来表示:
f(x)=w·x+b(4.14)
假设所有训练数据在ε精度下如图4.5所示无误差地用线性函数拟合,即
基坑降水工程的环境效应与评价方法
图4.5支持向量机回归
考虑到允许误差的情况,引入松弛因子ξi,
,则式(4.13)变为
基坑降水工程的环境效应与评价方法
其中常数C>0,表示对超出误差ε的样本的惩罚程度,ξi,
为松弛变量的上限与下限 。为此构造拉格朗日函数:
基坑降水工程的环境效应与评价方法
得到其对偶问题为:
基坑降水工程的环境效应与评价方法
基坑降水工程的环境效应与评价方法
基坑降水工程的环境效应与评价方法
可以得到回归函数为:
其中,αi,
将只有一小部分小为零,它们对应的样本就是支持向量 。
(2)支持向量机非线性回归
以上讨论的是线性问题,对于非线性问题,把输入样本xi通过ψ:x→H映射到高维特征空间H(可能是无穷维) 。当在特征空间中构造最优超平面时,实际上只需进行内积运算,而这种内积运算是可以用原空间中的函数来实现的,没有必要知道ψ的形式 。因为只要核函数K(xi,xj)满足Mercer条件,它就对应某一变换空间的内积即K(xi,xj)=ψ(i)·ψ(xj) 。这一点提供了可能导致的“维数灾难”问题解决方法 。
由线性支持向量回归可知,二次规划的拉格朗日目标函数:
基坑降水工程的环境效应与评价方法
其对偶形式:
基坑降水工程的环境效应与评价方法
可以得到回归函数为:
基坑降水工程的环境效应与评价方法
传统的拟合方法通常是在线性方程后面加高阶项 。由此增加的可调参数增加了过拟合的风险 。支持向量回归用核函数即能作非线性回归,达到了“升维”的目的,增加的可调参数很少,过拟合仍能控制 。
支持向量机(SVM)基本原理 看了很多关于SVM的博客,但是常常只能保存书签之后看,有时候有的博客就突然没了,这里就作为搬运工总结一下之后自己看吧 。主要内容来自于:
支持向量机通俗导论(理解SVM的三层境界)
线性回归
给定数据集, 其中,,线性回归试图学习到一个线性模型,尽可能地输出正确标记.
如果我们要用线性回归算法来解决一个分类问题,(对于分类,y 取值为 0 或者 1),但如果你使用的是线性回归,那么假设函数的输出值可能远大于 1,或者远小于 0,就算所有训练样本的标签 y 都是 0 或 1但是如果算法得到的值远大于 1 或者远小于 0 的话,就会感觉很奇怪 。所以我们在接下来的要研究的算法就叫做逻辑回归算法,这个算法的性质是:它的输出值永远在 0 到 1 之间 。
所以逻辑回归就是一个分类算法,这个算法的输出值永远在 0 到 1 之间.
我们先看二分类的LR,具体做法是:利用sigmoid 函数,将每一个点的回归值映射到0,1之间.sigmoid函数特性如下:
如图所示,令, 当 z > 0, z 越大, sigmoid 返回值越接近1(但永远不会超过1). 反之,当z < 0时,z 越小, sigmoid 返回值越接近0(但永远不会小于0).
支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为 特征空间 上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解 。
线性分类器
给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类 。如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( wT中的T代表转置):
- 支持移动4G网络的手机有哪些
- 女孩能接受远嫁外地嘛
- 支持方舟子的科学家
- 怎么查看主板是否支持7.1声道
- 支付宝蚂蚁花呗支持那些平台付款
- 韩版fold支持国内5g吗
- 支付宝怎么解绑手机号
- 支付宝支持三星s7指纹支付了吗
- 支付宝支持什么邮箱注册
- wincc怎么弹出小窗口