常见电解电容的封装形式是什么( 六 )



老练温度的确定也应从有利于可靠性和长寿命的角度出发 。具体的依据应从两方面考虑:第一,电容器的额定工作温度 。第二,老练的目的---剔除质量不合格的产品 。这样电容器的高温老练温度以额定工作温度正偏5℃为宜 。

统计400v/100 uF¢22mm×35mm老练电流下降情况(见表2)可得结论,电容器在高温老练过程中,总电流的变化经历上升→最大→下降→最小→恒定等几个阶段,最佳的高温老练时间确定在到达最小电流之时(额定温度到达后2h)即可,再长的老练时间是浪费 。从剔除不合格品的角度来看,电容器爆炸、鼓底发生的时间一般在电流的上升阶段,即最大电流到达之前(额定温度到达前后) 。

5.电容器在脉动电路中的发热:

电容器接入脉动电路后,除了完成其功能外,还要消耗一部电能,并转变成热耗,一方面电容器本身发热;另一方面也通过电容器外表向周围附近环境散热,所消耗的电能常用有功功率损耗P有来表示,对电容来讲,由两部份组成; (1)由于较大的漏电流所引起的发热损耗,这种情况一般是指高温情况下 。

(2)由于存在tgδ所引起的发热损耗,严格地讲它包括三个部份,介质损耗、电解质损耗、导电及接触电阻损耗;
另外注意,并联电路所所推导出的公式,适用于正弦电压,如果电压波形为非正弦曲线,即除频率为f1的正弦基波外,还会有高次谐波,则P有可能显著增加,在此情况下,电容的总功率损耗是每个单独频率下损耗之和 。

铝电解电容的最高容许温度决定于工作电解液,不得超过使电解液性能恶化,发生不可逆的温度 。

6.使用中提高电解电容器寿命措施

无论电容器在电子技术哪个领域中使用,都希望所用元件满足性能要求,不会轻易受损,达到延长使用寿命的目的 。在电路设计时,应对电解电容器的性能有更深入的了解,做到心中有数,不要使电容器一直处于工作顶峰状态 。具体从以下几个方面来考虑 。

6.1降低所处环境温度

降低所处环境温度,使电容器不在上限类别温度下工作,另外还要考虑电容器本身发热影响,这一点对液体电解质类型产品尤为重要 。如果产生高温,会使漏电流剧增,气体增多,使外壳处于内压急增状态;另外高温能使电解液加速干涸,相对缩短产品寿命 。因此对长寿命要求的产品来说,工作温度应控制在50℃以下,这样相应的寿命约可提高1~2个数量级 。例如在45℃以可工作20年的计算机电容器,在85℃下则只能工作1~2年 。如需要应用在上限类别温度(85℃),则电容器芯子中心温度应不超过95℃,而且还得视所选择工作电解液的性质而定 。这种高温影响对固体钽电容器来说,不如铝电解电容器那么严重,但肯定也是有害的 。

6.2降低额定电压的使用上限

降低额定电压的使用上限,也就是降低介质氧化膜的工作场强,对铝电容器将适用 。降负荷一半后,电容器的寿命能提高2个数量级之多 。

实际上铝氧化膜如出现损伤和被腐蚀,修补氧化膜拜出只能在最高的工作电压下进行,局部难于恢复到原始形成电压值下的氧化膜厚度,所以过分降低工作电压,对铝电解电容器也并不是最合适的措施 。

比较以上两个因素的影响,对铝电容器来说,以降低工作温度为最关键 。

6.3控制工作中的纹波电流值

电解电容器用在脉动电路中,造成功率消耗而发热升温的主要因素是纹波电流(对较小容量的电容器则是纹波电压)的大小,一般提供的失效率与温度关系曲线大都是在无纹波的直流电压下测出的只考虑了漏电流,比此时芯子内部中心温度几乎与环境温度相差不多 。可是在实际应用中,由于纹波电流所导致的发热能使芯子中心温升,最高时可达到几十摄氏度 。(芯子温升取决于电容器所处环境温度和对纹波电流的控制) 。所以,高纹波电流易造成芯子的电解液干涸,电容器早期失效 。同时,长时间纹波电流超过规定值,也是导致电容器防爆阀打开的因素之一 。

6.4避免频繁的浪涌电压施加到电容器上

电路的开或关,都会产生一过渡状态的瞬间电压,一般其值要大于工作电压,而且相应地产生一冲击电流,如果电源和负载的电阻均较小,这样瞬时电流值相当大,容易引起电解电容器氧化膜的损伤,因为电容器在大冲击电流下,容易在膜的薄弱区域发热促使晶化提早产生,并降低耐压能力,所以为提高使用寿命,应避免发生频繁的浪涌电压施加到电容器上,当工作电压接近额定电压时,更是如此 。