高二数学必修二知识点总结
文章插图
很多人都认为数学很难学,但只要你经常不断地学习,你就什么都知道 。你知道得越多,你就越有力量 。
高二数学必修二的知识点总结
文章插图
在学习,要认真,仔细地规划每一分钟 。认真投入到学习中 。
挑战自己,相信自己 。人一生的时间的有限的,时间不等人 。以下是我给大家整理的高二数学必修二的知识点总结,希望能帮助到你!高二数学必修二的知识点总结1
一.直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角 。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度 。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率 。直线的斜率常用k表示 。斜率反映直线与轴的倾斜程度 。②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P
1.P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到 。(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y
1.?
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x
1.?②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为 。⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中 。
(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否 。(7)两条直线的交点相交交点坐标即方程组的一组解 。方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解 。
二.圆的方程
1.圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径 。
2.圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形 。(3)求圆方程的方法:一般都采用待定系数法:先设后求 。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置 。
3.直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4.圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定 。
设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定 。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆 。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点
三.立体几何初步
1.柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形 。(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方 。
- 高一语文必修四古诗文必背篇目
- 苏教版四年级下册数学期末试题
- 高二文科生学习方法有哪些?
- 高一英语必修一知识点总结
- 高考数学解题技巧12种
- 介绍几本初二好的数学练习册
- 数学教师工作总结
- 北师大版六年级数学知识点下册
- 高一数学必修一所有公式归纳是什么?
- 小学数学教学小随笔3篇