高二数学必修二知识点总结( 三 )


4.直线被圆锥曲线截得的弦长公式:
5.注意解析几何与向量结合问题:
1.,.(1);(2).
2.数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即
3.模的计算:|a|=.算模可以先算向量的平方
4.向量的运算过程中完全平方公式等照样适用:
三.直线、平面、简单几何体:
1.学会三视图的分析:
2.斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy 。
画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3.表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=⑷球体:①表面积:S=;②体积:V=
4.位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行 。(2)平面与平面平行:①线面平行面面平行 。(3)垂直问题:线线垂直线面垂直面面垂直 。核心是线面垂直:垂直平面内的两条相交直线
5.求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形;⑵直线与平面所成的角:直线与射影所成的角高二数学必修二的知识点总结3
一.随机事件主要掌握好(三四五)(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积 。(2)四种运算律:交换律、结合律、分配律、德莫根律 。(3)事件的五种关系:包含、相等、互斥(互不相容)、? 。
高二数学知识点大全必修二

高二数学必修二知识点总结

文章插图
高中数学难度更大,特别是高二数学,具有承上启下的作用,学好数学就是要掌握主要知识点 。下面是我给大家带来的高二数学知识点大全必修二,希望对你有帮助 。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积 3 圆锥的表面积4 圆台的表面积5 球的表面积(二)空间几何体的体积1柱体的体积2锥体的体积3台体的体积4球体的体积第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等 。3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈LB∈L=> L αA∈αB∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面 。符号表示为:A、B、C三点不共线 => 有且只有一个平面α,使A∈α、B∈α、C∈α 。公理2作用:确定一个平面的依据 。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 。符号表示为:P∈α∩β =>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点 。2 公理4:平行于同一条直线的两条直线互相平行 。
符号表示为:设a、b、c是三条直线a∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用 。公理4作用:判断空间两条直线平行的依据 。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角 。