2018Äê×îÐÂÓ¢¹úÊýѧרҵPhDÕÐÉúÐÅÏ¢

¡º¸ÊËàÁúÍøÕªÒª_2018Äê×îÐÂÓ¢¹úÊýѧרҵPhDÕÐÉúÐÅÏ¢¡»Ð¡±àÌáʾÄú±¾ÎÄԭʼ±êÌâÊÇ£º2018Äê×îÐÂÓ¢¹úÊýѧרҵPhDÕÐÉúÐÅÏ¢ СÂü²©Ê¿Îª´ó¼ÒÕûÀí...


С±àÌáʾÄú±¾ÎÄԭʼ±êÌâÊÇ£º2018Äê×îÐÂÓ¢¹úÊýѧרҵPhDÕÐÉúÐÅÏ¢

СÂü²©Ê¿Îª´ó¼ÒÕûÀíÁËÊýѧרҵµÄ²©Ê¿ÏîÄ¿£¬Çë´ó¼ÒÇмÇÉêÇë½ØÖ¹ÈÕÆÚ£¬ÓÐÉêÇëÒâÏòµÄͬѧ»¶Ó­×ÉѯСÂü²©Ê¿ÉêÇë~

----2018Äê×îÐÂÓ¢¹úÊýѧרҵPhDÕÐÉúÐÅÏ¢//----¸ÊËàÁúÍø //

01

Algebraic groups, geometric invariant theory and actions on spherical buildings

Aberdeen University È«Ä꿪·Å

Ïà¹Øרҵ£ºMathematics

ÏêϸÐÅÏ¢

Project Deion

Group theory is the mathematical study of symmetry. Algebraic groups are certain groups of matrices with entries coming from a field such as the real numbers, the complex numbers or the integers modulo a prime. They are important in many areas of pure mathematics including number theory, representation theory and the theory of buildings. Their study combines ideas from algebraic geometry (the geometry of polynomials) and group theory.

In recent years some powerful geometric techniques were introduced to prove results about algebraic groups and related mathematical objects. The aim of this project is to investigate new applications of these techniques to the structure of algebraic groups and the spaces that they act on. Some possible directions for research include geometric invariant theory, spherical buildings and the subgroup structure of algebraic groups over non-algebraically closed fields.

The successful candidate will have or expect to have a UK Honours Degree at 2.1 (or equivalent) in Mathematics.

Knowledge of: Algebra, group theory. Some knowledge of algebraic geometry would be useful but is not essential.

ÍƼö

³±¡¤¿Æ¼¼

Á³Æ¤ºñ¡¢ÇéÉ̸ߡ¢»á½²»°£¡º¼ÖÝÄêÇáÈËÑÛÖеÄÐÂÖ°Òµ£¬¾ÓÈ»ÊÇÕâÑùµÄ¡­¡­

ÔĶÁ(32)

º¼Öݵĸ÷ÀàÖ±²¥»ú¹¹Ò²ÈçÓêºó´ºËñ£¬Ö÷²¥ÐÐÒµ³ÊÏÖ³öÄêÇữ¡¢¹æ·¶»¯ºÍ±ê×¼»¯µÄÇ÷ÊÆ£¬²»ÉÙ´óѧ±ÏÒµÉú°Ñ±ÏÒµºóµÄµÚÒ»·Ý¹¤×÷Ëø¶¨ÔÚÁË¡°Ö÷²¥¡±¡£ À´×ÔÖØÇìµÄ95ºóÕÔÕÔ£¬´óѧ¾Í¶ÁÓÚÒ½¿Æ...

³±¡¤¿Æ¼¼

áéÖÝÊÐáé½­ÇøÓªÉÌ°ì¾ÙÐС°áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳ¡±ÉÏÏßÆô¶¯ÒÇʽ

ÔĶÁ(11)

¬ÌṩÃñÉú¡¢ÐÅÓᢽðÈÚµÈNÀàÐÅÓó¡¾°¡£Íõ¼ÌÃ÷Ö¸³ö£¬áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳµÄ¿ª·¢ÉÏÏßÊÇáé½­ÇøÐÅÓÃÌåϵ½¨É蹤×÷È¡µÃµÄ½×¶ÎÐÔÖØÒª³É¹û£¬Ò²ÊÇáéÖÝÊС¶´òÔì¡°ÐÅÓÃʾ·¶Ö®³Ç¡±...

³±¡¤¿Æ¼¼

¿áÎÒ|»ªÎªÐû²¼Ð¹棬ÀÏÓû§Ó­À´¸£Àû£¬ÈÙÒ«Óû§Ò²Ã»±»¡°Å×Æú¡±£¿

ÔĶÁ(34)

º£Ë¼÷è÷ëµÄ³öÏָıäÁË»ªÎªµÄ·¢Õ¹Â·Ïߣ¬Í¬Ê±Ò²¸Ä±äÁËÎÒÃǶԹú²úÊÖ»úµÄÈÏÖª¡£´Ó»ªÎªMate7ʱ´ú¿ªÊ¼£¬»ªÎª¾Í×ßÏòÁË×ÔÖ÷¸ß¶ËµÄ²úƷ·Ïߣ¬Èç½ñµÄMate40ϵÁÐÒѾ­Äܹ»³É¹¦ºÍiPhone12µÈÆì½¢¶Ô...

³±¡¤¿Æ¼¼

СÃ׿Ƽ¼|»ªÎªMate50Pro¸ÅÄî»ú£º97%ÆÁÕ¼±ÈÅäºóÖÃ6¾µÍ·£¬±ÈСÃ×11Ç¿¶àÁË

ÔĶÁ(20)

ÑÓÐøÁ˷dz£¾­µäµÄÆÙ²¼ÆÁÔìÐÍ£¬Ö»²»¹ýÆÙ²¼±ß¿òÏÔµÃÉÔ΢խÁ˵㣬¶øÆÁĻȡÏûÁË´ò¿×¾µÍ·µÄͬʱ£¬»¹Äܹ»ÊµÏÖ3DÈËÁ³Ê¶±ðºÍÆÁϾµÍ·¹¦ÄÜ¡£Æäʵ¾ÍÊǽ«Ç°¾µÍ·²ØÔÚÆÁÄ»ÏÂÃ棬¶ø3DÈËÁ³Ê¶±ð...

³±¡¤¿Æ¼¼

Á³Æ¤ºñ¡¢ÇéÉ̸ߡ¢»á½²»°£¡º¼ÖÝÄêÇáÈËÑÛÖеÄÐÂÖ°Òµ£¬¾ÓÈ»ÊÇÕâÑùµÄ¡­¡­

ÔĶÁ(32)

º¼Öݵĸ÷ÀàÖ±²¥»ú¹¹Ò²ÈçÓêºó´ºËñ£¬Ö÷²¥ÐÐÒµ³ÊÏÖ³öÄêÇữ¡¢¹æ·¶»¯ºÍ±ê×¼»¯µÄÇ÷ÊÆ£¬²»ÉÙ´óѧ±ÏÒµÉú°Ñ±ÏÒµºóµÄµÚÒ»·Ý¹¤×÷Ëø¶¨ÔÚÁË¡°Ö÷²¥¡±¡£ À´×ÔÖØÇìµÄ95ºóÕÔÕÔ£¬´óѧ¾Í¶ÁÓÚÒ½¿Æ...

³±¡¤¿Æ¼¼

áéÖÝÊÐáé½­ÇøÓªÉÌ°ì¾ÙÐС°áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳ¡±ÉÏÏßÆô¶¯ÒÇʽ

ÔĶÁ(11)

¬ÌṩÃñÉú¡¢ÐÅÓᢽðÈÚµÈNÀàÐÅÓó¡¾°¡£Íõ¼ÌÃ÷Ö¸³ö£¬áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳµÄ¿ª·¢ÉÏÏßÊÇáé½­ÇøÐÅÓÃÌåϵ½¨É蹤×÷È¡µÃµÄ½×¶ÎÐÔÖØÒª³É¹û£¬Ò²ÊÇáéÖÝÊС¶´òÔì¡°ÐÅÓÃʾ·¶Ö®³Ç¡±...

¶¯Âþ

ÍõÕßÈÙÒ«Âþ»­¡¢ÊØÔ¼ÓÃÌ×·¶Ô×Ô¼ºµÜµÜ£¬µ«Ã»Ïëµ½µÜµÜ²»°´Ì×·À´£¿

ÔĶÁ(30)

µ«Ã»Ïëµ½µÜµÜ¸ù±¾²»°´Ì×·À´£¬Ö±½ÓÌø¹ýÁËËùÓÐÊ߲ˣ¬ÕâÈÃÊØÔ¼ºÜÊÇ¿àÄÕ¡£°ÙÀïÊØÔ¼Ó¦¸ÃÔõÑù²ÅÄܸĵôµÜµÜÌôʳµÄ»µÃ«²¡£¬ÈÃËû¶à³ÔÊ߲ˣ¬¶à³ÔË®¹ûÄØ£¿Ò»¸öÈËÖªµÀ×Ô¼ºÎªÊ²Ã´¶ø»î£¬¾Í...

³±¡¤¿Æ¼¼

ÔËÓªÉÌ|ÃÀ¹úÈ¡ÏûÍËÊУ¡±äÁ³À´µÃÌ«¿ì£¬Èý´óÔËÓªÉÌʼÁÏδ¼°£¿

ÔĶÁ(44)

¸Û¹É5ÈÕÔç¼äÐÐÇéÏÔʾ£¬ÖйúµçÐÅ¡¢ÖйúÒƶ¯¡¢ÖйúÁªÍ¨¾ùÕdz¬5%¡£´ÓÀÕÁîÍËÊе½È¡ÏûÍËÊУ¬ÖмäÒ²²»¹ýºÄ·ÑÁË5ÌìµÄʱ¼ä£¬ËûÃÇÕâ¸ö±äÁ³µÄËٶȹûÈ»ÊÇ¡°ÊÀ½çµÚÒ»¡±£¬Èý´óÔËÓªÉ̹À¼Æµ½ÏÖ...

»á¡¤Éú»î

Âþ»ÄÕ¦°ì

ÔĶÁ(28)

ÓÐʱ¿Ì·¢Ã÷¿ÉÒÔ¿´µÄҲû±£³ÖÏÂÈ¥£¬¾ÍÊDz»¸ÐÐËȤ£¬»¹ÒªµÈ´ýÕæÕý°®ºÃµÄ·¬°¡...

³±¡¤¿Æ¼¼

Áãë´Íæ¼Ò|Èý¹úÖ¾Õ½ÂÔ°æ:ÄÚÕþ½«Íê³ÉÒ»´Î10000Õ½¹¦µÄÊÆÈçÆÆÖñ¡¢ÏòËÀ¶øÉú³É¾Í

ÔĶÁ(11)

ÆäʵÕâЩ³É¾ÍÖ»ÊÇ¿´ÆðÀ´ÄÑ£¬ÎÒ¾õµÃ²ß»®¶¼ÒѾ­¸øÄãÏëºÃ°ì·¨ÁË¡£ÏÂÃæÊÇÄãÐèÒª×öµÄ×¼±¸³É¾Í£ºµÇ·åÔ켫¡¢ÓñøÈçÉñ¡¢ÊÆÈçÆÆÖñ¡¢ÏòËÀ¶øÉúÐèÒª×öµÄ×¼±¸²ÄÁÏ£º1¡¢Ð¡ºÅ1¸ö»òÕßС»ï°é1ÈË...

¶¯Âþ

´óÕ½|¡¶¸ßУ֮Éñ¡·ÉÏÑÝ¡°ÌæÉí¡±´óÕ½£¬Õⲿз¬Ô½À´Ô½ÓÐÒâ˼ÁË£¡

ÔĶÁ(19)

È»¶øÔ¤ÈȲ¿·Ö¾ÍºÜÎüÒýÈË£¬¸ü±ð˵ÕæÕýµÄ¾çÇéÁË¡£ÔÚ¶¯»­µÚ¶þ¼¯£¬ÄÐÖ÷³ÂëÀûÒòΪ˽×Ô¸ÉɬËûÈËÕ½¶·£¬±»²ÃÅдø×ßÁË£¬¹ØÓÚ³ÂëÀûµÄ´¦·ÖÔÚµÚÈý¼¯Ò²ÒѾ­¸ø³ö´ð°¸¡£ÄDZãÊÇÈóÂëÀûºÍ²Ã...

³±¡¤¿Æ¼¼

Ò»¼ÓNordn10 5gºÍ100¼´½«·¢²¼£¬ÖеͶËÊÖ»ú£¿

ÔĶÁ(30)

ÆäʵÏÖÔÚÄܹ»¿´³öÀ´µÄÒ»¼þÊ £¬ Ò»¼ÓÏÖÔÚÒ²¿ªÊ¼Öð½¥Ôö¼Ó×Ô¼ºµÄ²úÆ·ÊýÁ¿ £¬ µ±È»¾ÍÊÇ˵ÏÖÔÚ²»¹âÊÇרÃÅ×öÆì½¢ÊÖ»úÁË £¬ µ±È» £¬ ÕâÊÇÒ»¸öËãÊDZ»¶¯µÄ¸Ä±ä £¬ Ò»¼Ó¿´ÆðÀ´Òª·¢²¼ÐÂÆ·ÁË...